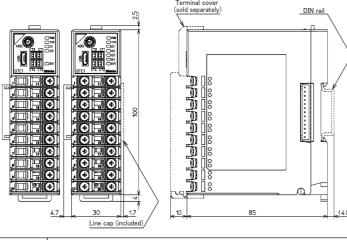
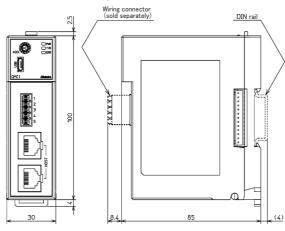

Terminal Arrangement

Control Module QTC1-2/QTC1-4


Communication Expansion Module QMC1


Dimensions (Scale: mm)

The QTC1-20 and QTC1-40 do not include a power supply terminal and RS-485 serial communication terminal.

Control Module QTC1-2/QTC1-4

Communication Expansion Module QMC1

● To ensure safe and correct use, thoroughly read and understand the manual before using this instrument. ● This instrument is intended to be used for industrial machinery, machine tools and measuring equipment. Verify correct usage after consulting with our agency or main office regarding the purpose of use.

(Never use this instrument for medical purposes in which human lives are involved.)

• External protection devices such as protection equipment against excessive temperature rise, etc. must be installed, as a malfunction of this product could result in serious damage to the system or injury to personnel Also, proper periodic maintenance is required.

YA YB SG

Also, proper personic mannerance is required.

This instrument must be used under the conditions and environment described in the manual.

Shinko Technos Co., Ltd. does not accept liability for any injury, loss of life or damage occurring due to the instrument being used under conditions not otherwise stated in this manual.

Caution with respect to

component in or being utilized in the manufacture of weapons of mass destruction (i.e. military the end users and the final use of this instrument. In the case of resale, ensure that this instrument

- This catalog is current as of June 2022, and its contents are subject to change without notice.
- · The photos in this catalog do not show actual usage.
- If you have any inquiries, please consult your us or our agency.

SHINKO TECHNOS CO., LTD.

OVERSEAS DIVISION

Head Office: 2-5-1, Senbahigashi, Minoo, Osaka,

562-0035, Japan : +81-72-727-6100

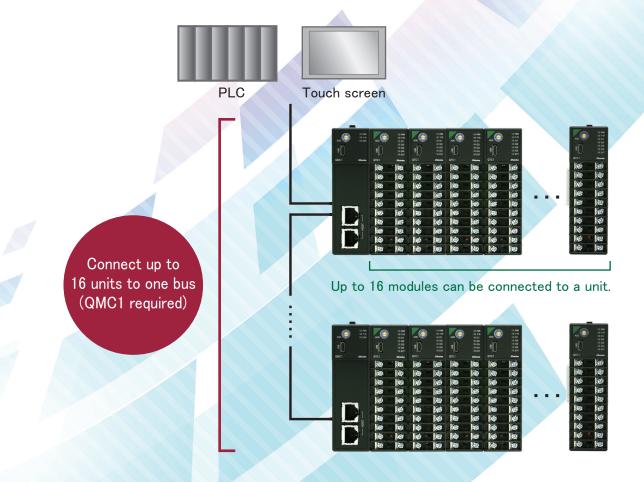
Tel Fax : +81-72-727-7006

URL : https://shinko-technos.co.jp/e/ E-mail : overseas@shinko-technos.co.jp Export Trade Control Ordinance

To avoid this instrument from being used as a applications, military equipment), please investigate Max. 1024-point measurement, control, and monitoring

MODULAR CONTROLLERS

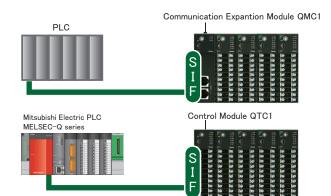
QX1 series


Internally mounted control system for multi-point measurement, control, and monitoring functionality

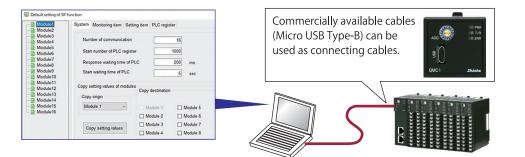
Multi-point controller for infinite possibilities

Max. 1024-point measurement and control

Program-less connections to PLCs for reduced work (SIF function)


The Smart InterFace (SIF) function (program-less PLC communication function) enables direct connectivity to PLCs from various manufacturers.

(Connect up to 1 unit to one bus)

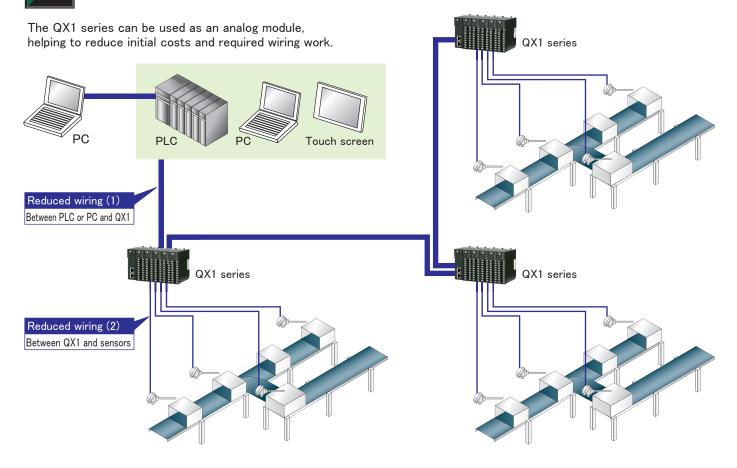

Supported PLC

b	Manufacturer	Resister	Communication command	
	Mitsubishi Electric	D resister	QR/QW	(*)
	Mitsubishi Electric	R resister	QR/QW	
	Mitsubishi Electric	D resister	WR/WW	
	Mitsubishi Electric	R resister	WR/WW	
	OMRON	DM resister	FINS command	
	KEYENCE	DM resister	RDS/WRS	

(*) The SIF function of the control module QTC1 is exclusively for Mitsubishi Electric Corporation PLC D register QR/QW.

Settings can be easily changed using the console software, making it possible to manage multiple modules at once.
OS: Windows 10
(Japanese/English)

Please use Communication Expansion Module QMC1 when replacing Shinko C series devices.


Some communication commands are different.

When replacing the C series with the

When replacing the C series with the QX1 series, please contact us.

2

Usable as an analog module for reducing initial costs and wiring

Administrative support

Failure prediction maintenance

Failure prediction maintenance

Check usage statuses using the following measurement functions.

- 1. Cumulative heater energization time (QTC1)
- 2. Cumulative module energization time (QMC1, QTC1)
- 3. Cumulative relay contact open/close count (QTC1)

In the event of an error, the error number and energization time are saved. The 10 most recent errors are saved. (Error history: Can be checked with console software) (QTC1)

	items	CH1	CH2	CH3	CH4	^
۰	Content of error history 1	384	384	384	384	
	Energizing integrated time of error history 1	790	790	790	767	
	Content of error history 2	384	384	384	384	
	Energizing integrated time of error history 2	790	790	790	767	
	Content of error history 3	384	384	384	384	
	Energizing integrated time of error history 3	789	789	789	767	
	Content of error history 4	384	384	384	256	
	Energizing integrated time of error history 4	766	789	766	767	
	Content of error history 5	256	256	256	384	
	Energizing integrated time of error history 5	766	789	766	767	
	Content of error history 6	640	384	384	256	
	Energizing integrated time of error history 6	764	787	763	767	
	Content of error history 7	384	384	256	384	
	Energizing integrated time of error history 7	764	786	763	767	
	Content of error history 8	384	256	384	384	
	Energizing integrated time of error history 8	763	786	763	766	
	Content of error history 9	256	384	384	384	
	Energizing integrated time of error history 9	763	785	758	766	
	Content of error history 10	384	256	256	384	
	Energizing integrated time of error history 10	762	785	758	766	

The input difference detection function makes it possible to monitor for input differences between channels.

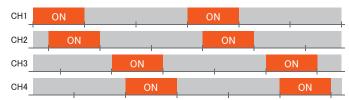
Risk avoidance in case of emergency

The output selection function can be used to switch between outputs. For example, in the event of a CH1 output failure, CH2 output is enabled.

A signal can be output if heater burnout is detected. (QTC1)

[Heater burnout alarm options:

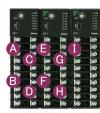
Single-phase, 3-phase (3-phase: QTC1-2

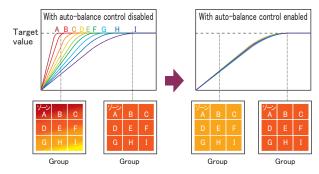

Alarm output signals can be used to start or stop control. [Event input/output (optional)]

eak power suppression function for lower power equipment costs

Peak power suppression function

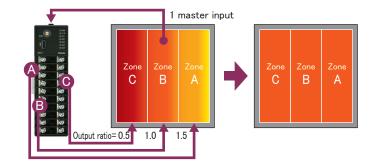
The total current can be set for the module, and power suppression control can be performed when the sum of the current values set for each channel is less than or equal to the total current. This can help minimize investments in power equipment.


■ Example of peak power suppression function output timing


Improved product quality

Multi-zone connection (Auto-balance control)

Take advantage of uniform control of multiple control locations (zones) of a control target (group) through linking. This helps prevent partial burning and mechanical distortion while also reducing adverse effects on product quality.



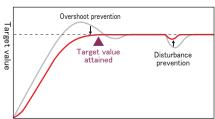
Auto-balance control works with multiple connected modules.

Individual output amount settings (output gain, bias control)

If required output amounts are known in advance, such as when controlling heaters in multiple locations (zones) for a single input point, uniform control of multiple zones is possible. Combining output selection functions reduces the number of input terminals needed, initial costs can also be reduced.

Rich functions

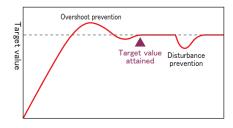
Five included control methods for reduced manual labor


Control characteristics vary depending on the control target.

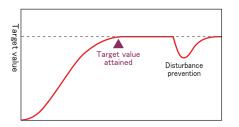
The QX1 series includes five control methods to meet a variety of control characteristics.

2DOF PID control

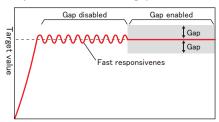
In addition to target value tracking and disturbance responsiveness, this well-balanced system reduces overshooting.


(When using default control action.)

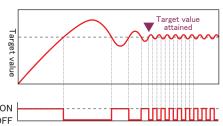
Fast-PID control


This control method emphasizes target value

This control method works best when replacing the controller with a Shinko product. (Doing so provides better performance.)


Slow-PID control

This control method prioritizes preventing overshooting rather than attaining a target value.


Gap-PID control

This control method is effective with fast responses such as for flow rates and valves. (Deviation characteristics are provided within the gap.)

ON-OFF control

This control method is selected for operating devices that turn heaters and other equipment on or off.

Maintenance improvements

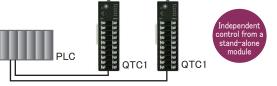
The numerous LEDs allow users to visually check statuses and errors on-site

Settings can be easily changed using the console software, making it possible to manage multiple modules at once. OS: Windows 10 (Japanese/English)

Commercially available cables (Micro USB Type-B) can be used as connecting cables.

Heating/cooling control

Heating and cooling are controlled with CH1 used as the heating-side input and CH2 as the cooling-side input. (Up to 2 loops are possible with the QTC1-4.)



The adjusted CH1 variable, obtained from the SV and PV of CH1, is substituted for the SV of CH2, enabling CH2 control calculation and outputting.

(Up to 2 loops are possible with the QTC1-4.)

When used independently, the QTC1 can be used for control or to communicate with a host, and adding monitoring targets is easy.

Control Module (2ch) QTC1-2

Control Module (4ch) QTC1-4

Model name

QTC1-2			-0						-0			
QTC1-4			-0						-0			
Power supply /	0										No options	
communication options	Р										Power supply / host communication function	
Wiring method		Т									Terminal block type	
CH1 control output	rt											
CH2 control output	ıt										See output code table	
CH3 control output	rt (*1)									dee output code table	
CH4 control output	ıt (*1	1)										
CH1 input												
CH2 input											Can innut and table	
CH3 input (*1)											See input code table	
CH4 input (*1)												
									0		No options	
Heater burnout ala	arm o	ptio	ns(*	2)					2		4 points CT, 20 A (*3) (*4)	
A							Α		4 points CT, 100 A (*3) (*4)			
										0	No options	
Event input/outpu	t opt	tions								1	Event input (4 points)(*5) (*6)	
										2	Event output (4 points) (*5) (*6)	

- (*1) For the QTC1-2, CH3 and CH4 are not available.

 (*2) Cannot be added to Direct current output type, DC voltage output type, or Triac output type.

 (*3) CT and connector harness are sold separately.

 (*4) Single-phase or 3-phase is available for the QTC1-2.

 (*5) Connector harness is sold separately.

 (*6) For the QTC1-2, Event input/output (2 points)

Input Codes

Code	Input Type	Range		RTD Pt100	-328.0 to 1562.0°F		
	Thermocouple K	−200 to 1370°C	М	DC voltage input 0 to 1 V DC	-2000 to 10000		
	Thermocouple K	-200.0 to 400.0°C	IVI	Direct current input 4 to 20 mA DC	0000 : 10000		
	Thermocouple J	-200 to 1000°C		(Externally mounted shunt resistor)	-2000 to 10000		
	Thermocouple R	0 to 1760°C		Direct current input 0 to 20 mA DC	0000 : 10000		
	Thermocouple S	0 to 1760°C		(Externally mounted shunt resistor)	-2000 to 10000		
	Thermocouple B	0 to 1820°C		Direct current input 4 to 20 mA DC	0000 + 10000		
	Thermocouple E	-200 to 800°C		(Built-in shunt resistor)	-2000 to 10000		
	Thermocouple T	-200.0 to 400.0°C	Α	Direct current input 0 to 20 mA DC	0000 : 10000		
	Thermocouple N	−200 to 1300°C		(Built-in shunt resistor)	-2000 to 10000		
М	Thermocouple PL- II	0 to 1390°C		DC voltage input 0 to 5 V DC	-2000 to 10000		
	Thermocouple C	0 to 2315°C	V	DC voltage input 1 to 5 V DC	-2000 to 10000		
	Thermocouple K	−328 to 2498°F		DC voltage input 0 to 10 V DC	-2000 to 10000		
	Thermocouple K	-328.0 to 752.0°F					
	Thermocouple J	−328 to 1832°F	Output				
	Thermocouple R	32 to 3200°F	Code	Output Type			
	Thermocouple S	32 to 3200°F	R	Relay contact output			
	Thermocouple B	32 to 3308°F	S	Non-contact voltage outp	out (for driving SSR)		
	Thermocouple E	-328 to 1472°F	Α	Direct current output, 4 t	o 20 mA DC		
	Thermocouple T	-328.0 to 752.0°F	0	Direct current output, 0 t	o 20 mA DC		
	Thermocouple N	−328 to 2372°F	V	DC voltage output, 0 to 1	V DC		
	Thermocouple PL- II	32 to 2534°F	1	DC voltage output, 0 to 5 V DC			
	Thermocouple C	32 to 4199°F	2	DC voltage output, 1 to 5	V DC		
	RTD Pt100	-200.0 to 850.0°C	3	DC voltage output, 0 to 1	0 V DC		
			С	Open collector output			
			Т	Triac output			
				-			

Specification

Rated Scale

Rated Scale									
Input (TC)	Scale	Range	Resolution	Input (RTD)	Scale	Resolution			
К	-200 to 1370°C	−328 to 2498°F	1°C(°F)	Pt100	-200.0 to 850.0°C	-328.0 to 1562.0°F	0.1 °C(°F)		
IX.	-200.0 to 400.0°C	-328.0 to 752.0°F	0.1 °C(°F)						
J	-200 to 1000°C	-328 to 1832°F	1°C(°F)						
R	0 to 1760°C	32 to 3200°F	1°C(°F)						
S	0 to 1760°C	32 to 3200°F	1°C(°F)	Input (DC)	Scale	Range	Resolution		
В	0 to 1820°C	32 to 3308°F	1°C(°F)	4 to 20 mA					
Е	-200 to 800°C	-328 to 1472°F	1°C(°F)	0 to 20 mA					
Т	-200.0 to 400.0°C	-328.0 to 752.0°F	0.1°C(°F)	0 to 1 V	-2000 to	10000 (*)	1		
N	-200 to 1300°C	-328 to 2372°F	1°C(°F)	0 to 5 V	2000 10	10000 (17)	' '		
PL-II	0 to 1390°C	32 to 2534°F	1°C(°F)	1 to 5 V					
С	0 to 2315°C	32 to 4199°F	1°C(°F)	0 to 10 V					

(*) Scalable

	Thermocouple (TC)	K, J, R, S, B, E, T, N, C, PL– $\rm I\!I$ External resistance: 100 Ω or less					
	RTD	(However, B input: 40 Ω or less) Pt100, 3-wire type					
		Allowable input lead wire resistance: 10 Ω or less per wire 0 to 20 mA DC, 4 to 20 mA DC					
		Input impedance: 50 Ω (Shunt resistance) Allowable input current: 50 mA or less					
Input	DC voltage (V DC)	0 to 1 V DC Input impedance: 1 M Ω or more					
		Allowable input voltage: 5 V DC or less					
		Allowable signal source resistance: 2 kΩ or less					
		0 to 5 V DC, 1 to 5 V DC, 0 to 10 V DC Input impedance: 100 k Ω or more					
		Allowable input voltage: 15 V DC or less Allowable signal source resistance: 100 Ω or less					
		of 23°C and mounting angle of ±5 degrees ±0.2% of each input span					
		ver, below 0°C (32°F): Within ±0.4% of each input span					
Base accuracy		puts, 0 to 200°C (32 to 392°F): Within ±6°C (12°F) t, 0 to 300°C (32 to 572°F): Accuracy is not guaranteed.					
		±0.1% of each input span					
		±0.2% of each input span ±0.2% of each input span					
Cold junction							
temperature compensation accuracy	Within ±1°C at −10 to \$	55°C					
	Thermocouple input (no decim	al point): Within ±100 ppm/°C of each input span					
Effect of		Below 0°C (32°F): Within $\pm 200~\text{ppm/°C}$ of each input spa					
ambient temperature	Thermocouple input (decimal p	within ±200 ppm/°C of each input span Below 0°C (32F): Within ±400 ppm/°C of each input span					
		Other: Within ±100 ppm/°C of each input span					
Effects of							
electromagnetic interference	Within ±1% of each inpu	ut span					
	20 ms (with only DC vol	tage input and Direct current input enabled)					
Input sampling	50 ms (with only DC vol 125 ms	(tage input and Direct current input enabled)					
period		egardless of settings for thermocouple input and RTD input					
	2DOF PID control						
	A control method that offers both tracking characteristics with SV changes,						
	and disturbance suppression. This method offers the same disturbance responsiveness as Fast-PID control as						
	well as control actions with reduced overshooting. Fast-PID control						
		rol method is used for constant value control					
	(SV control at a single	evalue). egral time and derivative time are set to 0.					
	· PI control: When de	rivative time is set to 0.					
		ntegral time is set to 0. rol: When the proportional gain 2DOF coefficient (α) is se					
		ivative 2DOF coefficient (γ , Cd) is set to 1.00.					
	This control method is						
		effective for processes where generating overshoot is					
	not desired, and proce exceeded the SV.	s effective for processes where generating overshoot is isses where the PV does not easily decrease after having					
	exceeded the SV. Gap-PID control	esses where the PV does not easily decrease after having					
	exceeded the SV. Gap-PID control If the PV is noisy or if	esses where the PV does not easily decrease after having					
	exceeded the SV. Gap-PID control If the PV is noisy or if may be maintained nea used, but since contro	sses where the PV does not easily decrease after having there is hysteresis in the operation unit, a slight fluctuation ar the deviation of 0. In such cases, a dead band is usually I is not performed within dead bands, the PV changes in the					
	exceeded the SV. Gap-PID control If the PV is noisy or if may be maintained nea used, but since contro event of a disturbance	esses where the PV does not easily decrease after having there is hysteresis in the operation unit, a slight fluctuation ar the deviation of 0. In such cases, a dead band is usually					
	exceeded the SV. Gap-PID control If the PV is noisy or if may be maintained nea used, but since contro event of a disturbance	isses where the PV does not easily decrease after having there is hysteresis in the operation unit, a slight fluctuation ar the deviation of 0. In such cases, a dead band is usually I is not performed within dead bands, the PV changes in the I. In this way, this control method ensures deviation					
Control	exceeded the SV. Gap-PID control If the PV is noisy or if may be maintained nes used, but since contro event of a disturbance characteristics in dead	there is hysteresis in the operation unit, a slight fluctuation ar the deviation of 0. In such cases, a dead band is usually 1 is not performed within dead bands, the PV changes in the 1. In this way, this control method ensures deviation 1 bands and allows for disturbance responses. Setting Range 1 to Input span °C (F) or 0.1 to Input span °C (F)					
Control action	exceeded the SV. Gap-PID control If the PV is noisy or if may be maintained ne used, but since contro event of a disturbance characteristics in dead	there is hysteresis in the operation unit, a slight fluctuation ar the deviation of 0. In such cases, a dead band is usually 1 is not performed within dead bands, the PV changes in the 1. In this way, this control method ensures deviation 1 bands and allows for disturbance responses. Setting Range 1 to Input span °C (°F) or 0.1 to Input span °C (°F) Direct current input, DC voltage input: 0.10 to 100.00%					
	exceeded the SV. Gap-PID control If the PV is noisy or if may be maintained ne used, but since contro event of a disturbance characteristics in dead	there is hysteresis in the operation unit, a slight fluctuation ar the deviation of 0. In such cases, a dead band is usually 1 is not performed within dead bands, the PV changes in the 1. In this way, this control method ensures deviation 1 bands and allows for disturbance responses. Setting Range 1 to Input span °C (F) or 0.1 to Input span °C (F)					
	exceeded the SV. Gap-PID control If the PV is noisy or if may be maintained ne used, but since contro event of a disturbance characteristics in dead	there is hysteresis in the operation unit, a slight fluctuation ar the deviation of 0. In such cases, a dead band is usually 1 is not performed within dead bands, the PV changes in the 1. In this way, this control method ensures deviation 1 bands and allows for disturbance responses. Setting Range 1 to Input span °C (F) or 0.1 to Input span °C (F) Direct current input, DC voltage input: 0.10 to 100.00% 0 to 3600 sec or 0.0 to 2000.0 sec 1 to 3600 sec or 0.1 to 2000.0 sec (When Slow-PID control is selected)					
	exceeded the SV. Gap-PID control If the PV is noisy or if may be maintained ne used, but since contro event of a disturbance characteristics in dead Item Proportional band (P)	there is hysteresis in the operation unit, a slight fluctuation ar the deviation of 0. In such cases, a dead band is usually 1 is not performed within dead bands, the PV changes in the 1. In this way, this control method ensures deviation 1 bands and allows for disturbance responses. Setting Range 1 to Input span °C (F) or 0.1 to Input span °C (F) Direct current input, DC voltage input: 0.10 to 100.00% 0 to 3600 sec or 0.0 to 2000.0 sec 1 to 3600 sec or 0.1 to 2000.0 sec (When Slow-PID control is selected)					
	exceeded the SV. Gap-PID control If the PV is noisy or if may be maintained ne used, but since contro event of a disturbance characteristics in dead Item Proportional band (P)	there is hysteresis in the operation unit, a slight fluctuation are the deviation of 0. In such cases, a dead band is usually lis not performed within dead bands, the PV changes in the 1. In this way, this control method ensures deviation at bands and allows for disturbance responses. Setting Range 1 to Input span °C (F) or 0.1 to Input span °C (F) Direct current input, DC voltage input: 0.10 to 100.00% 0 to 3600 sec or 0.0 to 2000.0 sec 1 to 3600 sec or 0.1 to 2000.0 sec (When Slow-PID control is selected) The setting range varies depending on the selected integral/derivative decimal point position.					
	exceeded the SV. Gap-PID control If the PV is noisy or if may be maintained ne used, but since contro event of a disturbance characteristics in dead Item Proportional band (P)	there is hysteresis in the operation unit, a slight fluctuation ar the deviation of 0. In such cases, a dead band is usually a lis not performed within dead bands, the PV changes in the 1. In this way, this control method ensures deviation d bands and allows for disturbance responses. Setting Range 1 to Input span °C (F) or 0.1 to Input span °C (F) Direct current input, DC voltage input: 0.10 to 100.00% 0 to 3600 sec or 0.0 to 2000.0 sec 1 to 3600 sec or 0.1 to 2000.0 sec (When Slow-PID control is selected) The setting range varies depending on the selected integral/derivative decimal point position.					
	exceeded the SV. Gap-PID control If the PV is noisy or if may be maintained ner used, but since contro event of a disturbance characteristics in dead Item Proportional band (P) Integral time (I) Derivative time (D)	there is hysteresis in the operation unit, a slight fluctuation ar the deviation of 0. In such cases, a dead band is usually 1 is not performed within dead bands, the PV changes in the 1. In this way, this control method ensures deviation 1 bands and allows for disturbance responses. Setting Range 1 to Input span °C (F) or 0.1 to Input span °C (F) Direct current input, DC voltage input: 0.10 to 100.00% 0 to 3600 sec or 0.0 to 2000.0 sec 1 to 3600 sec or 0.1 to 2000.0 sec (When Slow-PID control is selected) The setting range varies depending on the selected integral/derivative decimal point position.					
	exceeded the SV. Gap-PID control If the PV is noisy or if may be maintained nea used, but since contro event of a disturbance characteristics in dead Item Proportional band (P) Integral time (I)	there is hysteresis in the operation unit, a slight fluctuation ar the deviation of 0. In such cases, a dead band is usually a lis not performed within dead bands, the PV changes in the 1. In this way, this control method ensures deviation d bands and allows for disturbance responses. Setting Range 1 to Input span °C (F) or 0.1 to Input span °C (F) Direct current input, DC voltage input: 0.10 to 100.00% 0 to 3600 sec or 0.0 to 2000.0 sec 1 to 3600 sec or 0.1 to 2000.0 sec (When Slow-PID control is selected) The setting range varies depending on the selected integral/derivative decimal point position.					
	exceeded the SV. Gap-PID control If the PV is noisy or if may be maintained ner used, but since contro event of a disturbance characteristics in dead Item Proportional band (P) Integral time (I) Derivative time (D) Proportional gain 2DOF coefficient (\alpha) Integral	there is hysteresis in the operation unit, a slight fluctuation ar the deviation of 0. In such cases, a dead band is usually 1 is not performed within dead bands, the PV changes in the 1. In this way, this control method ensures deviation 1 bands and allows for disturbance responses. Setting Range 1 to Input span °C (F) or 0.1 to Input span °C (F) Direct current input, DC voltage input: 0.10 to 100.00% 0 to 3600 sec or 0.0 to 2000.0 sec 1 to 3600 sec or 0.1 to 2000.0 sec (When Slow-PID control is selected) The setting range varies depending on the selected integral/derivative decimal point position. 0 to 3600 sec or 0.0 to 2000.0 sec The setting range varies depending on the selected integral/derivative decimal point position. 0 to 3600 sec or 0.0 to 2000.0 sec The setting range varies depending on the selected integral/derivative decimal point position.					
	exceeded the SV. Gap-PID control If the PV is noisy or if may be maintained neu used, but since contro event of a disturbance characteristics in dead Item Proportional band (P) Integral time (I) Derivative time (D) Proportional gain 2DOF coefficient (α) Integral 2DOF coefficient (β)	there is hysteresis in the operation unit, a slight fluctuation ar the deviation of 0. In such cases, a dead band is usually 1 is not performed within dead bands, the PV changes in the 1. In this way, this control method ensures deviation 1 bands and allows for disturbance responses. Setting Range 1 to Input span °C (F) or 0.1 to Input span °C (F) Direct current input, DC voltage input: 0.10 to 100.00% 0 to 3600 sec or 0.0 to 200.0 sec 1 to 3600 sec or 0.1 to 2000.0 sec (When Slow-PID control is selected) The setting range varies depending on the selected integral/derivative decimal point position.					
	exceeded the SV. Gap-PID control If the PV is noisy or if may be maintained ner used, but since contro event of a disturbance characteristics in dead Item Proportional band (P) Integral time (I) Derivative time (D) Proportional gain 2DOF coefficient (\alpha) Integral	there is hysteresis in the operation unit, a slight fluctuation ar the deviation of 0. In such cases, a dead band is usually 1 is not performed within dead bands, the PV changes in the 1. In this way, this control method ensures deviation 1 bands and allows for disturbance responses. Setting Range 1 to Input span °C (F) or 0.1 to Input span °C (F) Direct current input, DC voltage input: 0.10 to 100.00% 0 to 3600 sec or 0.0 to 2000.0 sec 1 to 3600 sec or 0.1 to 2000.0 sec (When Slow-PID control is selected) The setting range varies depending on the selected integral/derivative decimal point position. 0 to 3600 sec or 0.0 to 2000.0 sec The setting range varies depending on the selected integral/derivative decimal point position. 0 to 3600 sec or 0.0 to 2000.0 sec The setting range varies depending on the selected integral/derivative decimal point position.					
	exceeded the SV. Gap-PID control If the PV is noisy or if may be maintained ner used, but since contro event of a disturbance characteristics in dead Item Proportional band (P) Integral time (I) Derivative time (D) Proportional gain 2DOF coefficient (α) Integral 2DOF coefficient (β) Derivativ	there is hysteresis in the operation unit, a slight fluctuation ar the deviation of 0. In such cases, a dead band is usually 1 is not performed within dead bands, the PV changes in the 1. In this way, this control method ensures deviation 1 bands and allows for disturbance responses. Setting Range 1 to Input span °C (F) or 0.1 to Input span °C (F) Direct current input, DC voltage input: 0.10 to 100.00% 0 to 3600 sec or 0.0 to 2000.0 sec 1 to 3600 sec or 0.1 to 2000.0 sec (When Slow-PID control is selected) The setting range varies depending on the selected integral/derivative decimal point position. 0 to 3600 sec or 0.0 to 2000.0 sec The setting range varies depending on the selected integral/derivative decimal point position. 0 to 3600 sec or 0.0 to 2000.0 sec The setting range varies depending on the selected integral/derivative decimal point position. 0.00 to 1.00 0.00 to 1.00					
	exceeded the SV. Gap-PID control If the PV is noisy or if may be maintained ner used, but since contro event of a disturbance characteristics in dead Item Proportional band (P) Integral time (I) Derivative time (D) Proportional gain 2DOF coefficient (α) Integral 2DOF coefficient (β) Derivativ 2DOF coefficient (γ, Cd) Proportional cycle Output high limit,	there is hysteresis in the operation unit, a slight fluctuation ar the deviation of 0. In such cases, a dead band is usually is not performed within dead bands, the PV changes in the b. In this way, this control method ensures deviation d bands and allows for disturbance responses. Setting Range					
	exceeded the SV. Gap-PID control If the PV is noisy or if may be maintained nea used, but since contro event of a disturbance characteristics in dead Item Proportional band (P) Integral time (I) Derivative time (D) Proportional gain 2DOF coefficient (α) Integral 2DOF coefficient (β) Derivativ 2DOF coefficient (γ, Cd) Proportional cycle	there is hysteresis in the operation unit, a slight fluctuation ar the deviation of 0. In such cases, a dead band is usually 1 is not performed within dead bands, the PV changes in the 1. In this way, this control method ensures deviation 1 bands and allows for disturbance responses. Setting Range 1 to Input span °C (F) or 0.1 to Input span °C (F) Direct current input, DC voltage input: 0.10 to 100.00% 0 to 3600 sec or 0.0 to 2000.0 sec 1 to 3600 sec or 0.1 to 2000.0 sec (When Slow-PID control is selected) The setting range varies depending on the selected integral/derivative decimal point position. 0 to 3600 sec or 0.0 to 2000.0 sec The setting range varies depending on the selected integral/derivative decimal point position. 0 to 3600 sec or 0.0 to 2000.0 sec The setting range varies depending on the selected integral/derivative decimal point position. 0.00 to 1.00 0.00 to 1.00 0.00 to 1.00 0.1 to 100.0 sec 0.0 to 100.0% Direct current output: -5.0 to 105.0%					
	exceeded the SV. Gap-PID control If the PV is noisy or if may be maintained ner used, but since contro event of a disturbance characteristics in dead Item Proportional band (P) Integral time (I) Derivative time (D) Proportional gain 2DOF coefficient (α) Integral 2DOF coefficient (β) Derivativ 2DOF coefficient (γ, Cd) Proportional cycle Output high limit,	there is hysteresis in the operation unit, a slight fluctuation ar the deviation of 0. In such cases, a dead band is usually is not performed within dead bands, the PV changes in the b. In this way, this control method ensures deviation d bands and allows for disturbance responses. Setting Range					
	exceeded the SV. Gap-PID control If the PV is noisy or if may be maintained ne used, but since contro event of a disturbance characteristics in dead Item Proportional band (P) Integral time (I) Proportional gain 2DOF coefficient (α) Integral 2DOF coefficient (β) Derivativ 2DOF coefficient (γ, Cd) Proportional cycle Output high limit, output low limit	there is hysteresis in the operation unit, a slight fluctuation are the deviation of 0. In such cases, a dead band is usually lis not performed within dead bands, the PV changes in the In this way, this control method ensures deviation at bands and allows for disturbance responses. Setting Range 1 to Input span °C (F) or 0.1 to Input span °C (F) Direct current input, DC voltage input: 0.10 to 100.00% 0 to 3600 sec or 0.0 to 2000.0 sec (When Slow-PID control is selected) The setting range varies depending on the selected integral/derivative decimal point position. 0 to 3600 sec or 0.0 to 2000.0 sec (When Slow-PID control is selected) The setting range varies depending on the selected integral/derivative decimal point position. 0 to 3600 sec or 0.0 to 2000.0 sec The setting range varies depending on the selected integral/derivative decimal point position. 0.00 to 1.00 0.00 to 1.00 0.1 to 100.0 sec 0.0 to 100.0 % Direct current output: -5.0 to 105.0% 0.0 to 10.0%					
	exceeded the SV. Gap-PID control If the PV is noisy or if may be maintained ner used, but since control event of a disturbance characteristics in dead Item Proportional band (P) Integral time (I) Derivative time (D) Proportional gain 2DOF coefficient (α) Integral 2DOF coefficient (β) Derivativ 2DOF coefficient (γ, Cd) Proportional cycle Output high limit, output low limit Gap width (*)	there is hysteresis in the operation unit, a slight fluctuation ar the deviation of 0. In such cases, a dead band is usually 1s not performed within dead bands, the PV changes in the 1s not performed within dead bands, the PV changes in the 1s in this way, this control method ensures deviation 1s bands and allows for disturbance responses. Setting Range 1 to Input span °C (F) or 0.1 to Input span °C (F) Direct current input, DC voltage input: 0.10 to 100.00% 0 to 3600 sec or 0.0 to 2000.0 sec 1 to 3600 sec or 0.1 to 2000.0 sec (When Slow-PID control is selected) The setting range varies depending on the selected integral/derivative decimal point position. 0 to 3600 sec or 0.0 to 2000.0 sec The setting range varies depending on the selected integral/derivative decimal point position. 0 to 3600 sec or 0.0 to 2000.0 sec The setting range varies depending on the selected integral/derivative decimal point position. 0.00 to 1.00 0.00 to 1.00 0.00 to 1.00 0.1 to 100.0 sec 0.0 to 100.0% Direct current output: -5.0 to 105.0% Proportional band × Gap width 0.0 to 1.0					
	exceeded the SV. Gap-PID control If the PV is noisy or if may be maintained ner used, but since contro event of a disturbance characteristics in dead Item Proportional band (P) Integral time (I) Derivative time (D) Proportional gain 2DOF coefficient (α) Integral 2DOF coefficient (β) Derivativ 2DOF coefficient (γ, Cd) Proportional cycle Output high limit, output low limit Gap width (*) Gap coefficient (*)	there is hysteresis in the operation unit, a slight fluctuation ar the deviation of 0. In such cases, a dead band is usually 1s not performed within dead bands, the PV changes in the 1s not performed within dead bands, the PV changes in the 1s in this way, this control method ensures deviation 1s bands and allows for disturbance responses. Setting Range 1 to Input span °C (F) or 0.1 to Input span °C (F) Direct current input, DC voltage input: 0.10 to 100.00% 0 to 3600 sec or 0.0 to 2000.0 sec 1 to 3600 sec or 0.1 to 2000.0 sec (When Slow-PID control is selected) The setting range varies depending on the selected integral/derivative decimal point position. 0 to 3600 sec or 0.0 to 2000.0 sec The setting range varies depending on the selected integral/derivative decimal point position. 0 to 3600 sec or 0.0 to 2000.0 sec The setting range varies depending on the selected integral/derivative decimal point position. 0.00 to 1.00 0.00 to 1.00 0.00 to 1.00 0.1 to 100.0 sec 0.0 to 100.0% Direct current output: -5.0 to 105.0% Proportional band × Gap width 0.0 to 1.0					
	exceeded the SV. Gap-PID control If the PV is noisy or if may be maintained ner used, but since control event of a disturbance characteristics in dead Item Proportional band (P) Integral time (I) Derivative time (D) Proportional gain 2DOF coefficient (α) Integral 2DOF coefficient (γ, Cd) Proportional cycle Output high limit, output low limit Gap width (*) (*) With Gap-PID co ON-OFF control Control method that of	there is hysteresis in the operation unit, a slight fluctuation ar the deviation of 0. In such cases, a dead band is usually is not performed within dead bands, the PV changes in the in this way, this control method ensures deviation d bands and allows for disturbance responses. Setting Range 1 to Input span °C (F) or 0.1 to Input span °C (F) Direct current input, DC voltage input: 0.10 to 100.00% 0 to 3600 sec or 0.0 to 2000.0 sec 1 to 3600 sec or 0.1 to 2000.0 sec (When Slow-PID control is selected) The setting range varies depending on the selected integral/derivative decimal point position. 0 to 3600 sec or 0.0 to 2000.0 sec The setting range varies depending on the selected integral/derivative decimal point position. 0 to 3600 sec or 0.0 to 2000.0 sec The setting range varies depending on the selected integral/derivative decimal point position. 0.00 to 1.00 0.00 to 1.00 0.00 to 1.00 0.00 to 1.00.0 Direct current output: -5.0 to 105.0% Proportional band × Gap width 0.0 to 1.0 introl only					
	exceeded the SV. Gap-PID control If the PV is noisy or if may be maintained ner used, but since control event of a disturbance characteristics in dead Item Proportional band (P) Integral time (I) Derivative time (D) Proportional gain 2DOF coefficient (α) Integral 2DOF coefficient (γ, Cd) Proportional cycle Output high limit, output low limit Gap width (*) Gap coefficient (*) (*) With Gap-PID co ON-OFF control	there is hysteresis in the operation unit, a slight fluctuation ar the deviation of 0. In such cases, a dead band is usually is not performed within dead bands, the PV changes in the in this way, this control method ensures deviation d bands and allows for disturbance responses. Setting Range 1 to Input span °C (F) or 0.1 to Input span °C (F) Direct current input, DC voltage input: 0.10 to 100.00% 0 to 3600 sec or 0.0 to 2000.0 sec 1 to 3600 sec or 0.1 to 2000.0 sec (When Slow-PID control is selected) The setting range varies depending on the selected integral/derivative decimal point position. 0 to 3600 sec or 0.0 to 2000.0 sec The setting range varies depending on the selected integral/derivative decimal point position. 0 to 3600 sec or 0.0 to 2000.0 sec The setting range varies depending on the selected integral/derivative decimal point position. 0.00 to 1.00 0.00 to 1.00 0.00 to 1.00 0.10 to 10.00 0.10 to 10.00 Direct current output: -5.0 to 105.0% Proportional band × Gap width 0.0 to 1.0 introl only					

Control range	Control output is turned OFF when the following control ranges are exceeded. Thermocouple input (no decimal point) Input range low limit value -50°C (90°F) to Input range high limit +50°C (90°F) Thermocouple input (decimal point), RTD input Input range low limit value - (Input span × 1%)°C(°F) to Input range high limit +50.0°C(90.0°F) Direct current input, DC voltage input Scaling low limit value - Scaling width × 1% to Scaling high limit value + Scaling width × 10%					
	Relay contact output:	1a Control capacity:	3 A 250 V AC (re 1 A 250 V AC (inc	esistive load) ductive load $\cos \phi = 0.4$)		
Control output	Non-contact voltage output	Minimum applicable load: 12 V DC ± 15% (for driving SSR)Ma * The power supply	x. 40 mA (short	circuit protected)		
	Direct current output	from the output. 4 to 20 mA DC, 0 to Load resistance: * The power supply	20 mA DC (Re Maximum 550 S	solution: 12000)		
	DC voltage output:	from the output. 0 to 1 V DC, 0 to 5 (Resolution: 12000) Allowable load resis	tance: 1kΩ or	more		
	Open collector output (NPN):	* The power supply from the output. Allowable load curre	ent: 100 mA o	r less		
	Triac output: (AC output zero-cross method)	Load voltage: Allowable load curre Load voltage:	30 V DC o ent: 0.5 A or le 75 to 250	ess		
Standard Functions	Alarm Function, Loop Break Alarm, Set Value Ramp Function, Power-On Return Action Selection, Non-Volatile IC Memory Data Save Selection, Automatic/Manual Control Switching, Sensor Correction Coefficient, Sensor Correction, Control Function Selection, Extension Function Selection, Output Gain/Bias Function, Input Calculation Function, Input Difference Detection Function					
Optional Functions	Heater Burnout Alarm, Event Input, Event Output					
	Communication line Communication method Communication speed	Half-duplex commu Selecting 9600, 192 possible using the D	EIA RS-485 compliant Half-duplex communication Selecting 9600, 19200, 38400, or 57600 bps is possible using the DIP switches. (Factory default: 57600 bps)			
Daniel Carelo /	Synchronization method Data bit/parity Parity:	Start-stop synchron Data bits: 8 Selecting even, odd communication spec	, or no parity is positive and control of the contr	on		
Power Supply / Host Communication Function	Stop bit	DIP switch. (Factors Selecting 1 or 2 is p				
(QTC1-2/QTC1-4)	Response delay time setting	specification selection to 1000 ms (Factor				
	reception doug time octaing	The response from command from the	the module after	receiving a		
	Data structure					
	Communication protocol Start bit	MODBUS R	TU			
	Data bit	8				
	Parity	Enabled (even, odd), Disabled			
	Stop bit	1 or 2				
Smart InterFace (SIF) Function (Program-less communication function)	This function enables a serial communication connection with Mitsubishi Electric MELSEC-Q series PLCs and writes/reads various data to/from the PLC register using the PLC communication protocol. The communication protocol uses QW and QR commands, and PLCs capable of using A-compatible 1C frame AnA/AnU common commands (QR/QW) (D resister) are supported.					
Attached Functions	Power failure countermeasures, Self-diagnosis, Automatic cold junction temperature, Compensation, PV filter time constant setting, Moving average count setting, CH enable/disable selection, Overscale, Underscale, Sensor error, Cold junction error, ADC error, Warm-up display, Cumulative contact open/close count measurement function, Cumulative energization time measurement function, Cumulative heater energization time, measurement function, Error history, Console communication					
Power supply voltage	24 V DC Allowable fluc	tuation range: 20 to 2	8 V DC			

Accessories Sold Separately

Product Name	Model		
50 Ω shunt resistor	RES-S01-050		
Front terminal cover	TC-QTC		
CT for 20 A	CTL-6-S-H (*1)		
CT for 100 A	CTL-12-S36-10L1U (*1)		
Heater burnout alarm connector harness	WQ (*1)		
Event input/output connector harness	EVQ (*2)		

(*1) For heater burnout alarm (heater burnout alarm option symbols: 2, A)

Communication Expansion Module QMC1

Model name

QMC1	-		-	
Communication type C4 C5				RS-422A
				RS-485 (*1)
Event input/output options		0		No options
		1		Event input 4 points (*2)
		2		Event output 4 points (*2)
		3		Event input 2 points, Event output 2 points (*2)
Communication prot	!		0	Console selection (MODBUS RTU / SIF) (*1)
Communication prot	0001		1	C series compatible

(*1): When connecting to an OMRON PLC or Keyence PLC using the SIF function (Smart InterFace, program-less communication function), it cannot be connected using the RS-485 communication type (QMC1-C5□). Use communication type RS-422A(QMC1-C4□). (*2): The plug side connector of the event input/output connector is sold separately

Communication lines	EIA RS-422A compliant EIA RS-485 compliant							
Communication method	Half-duplex communication							
Synchronization method	Start-stop synchronization							
Communication speed	Selecting 9600, 19200, 38400, (Factory default: 9600 bps)	or 57600 bps is possible u	sing the DIP switches.					
Data bit/ parity	Data bit: 7 bits, 8 bits (Factory default: 8 bits) Parity bit: With parity, No parity (Factory default: With parity) Parity: Even, Odd (Factory default: Even) Select by communication specification selection DIP switch							
Stop bit	Selecting 1 or 2 is possible using the communication specification selection DIP switch. (Factory default: 1 bit)							
Response delay time setting	0 to 1000 ms (Factory default: 0 ms) The response from the module after receiving a command from the host can be delayed.							
	Communication protocol	Register	Communication comman					
	MODBUS	_	_					
	Made by Mitsubishi Electric	D register	QR/QW					
Communication	Made by Mitsubishi Electric	R register	QR/QW					
protocol (Set with console	Made by Mitsubishi Electric	D register	WR/WW					
software)	Made by Mitsubishi Electric	R register	WR/WW					
	Made by OMRON	DM register	FINS command					
	Made by Keyence	DM register	RDS/WRS					
	C series compatible protocols are selected by model name.							
Number of connections	Control module: Max 16 modu	les						
	No. of inputs	4 or 2						
Event Input	Input method	Voltage contact input sin	k method					
(optional)	Circuit current when closed Reading judgment time							
	No. of outputs	4 or 2						
Event Output	Circuit	NPN open collector						
(optional)	Maximum load voltage 30 V DC Maximum load capacity 50 mA							
Attached Functions	Power failure countermeasures, Self-diagnosis, Warm-up display, Cumulative energization time measurement function							
Power supply voltage	24 V DC Allowable fluctu							

Accessories Sold Separately

Product Name	Model
Communication cable (USB Type A - Modular)	CMC-001-4
Communication cable [Modular - Y terminal (RS-485, 3-wire)]	CQM-001
Communication cable [Modular - Y terminal (RS-422A, 5-wire)]	CQM-002
Communication cable (Modular - Modular)	CQQ-001
Wiring connector	0225-0805 (*)

(*): For event input/output (event input/output option symbols: 1, 2, 3)

^(*2) For event input or event output (event input/output option symbols: 1, 2)