
Digital Indicating Conductivity Meter AER-102-ECH (HIGH CONCENTRATION)

Instruction Manual

Preface

Thank you for purchasing our AER-102-ECH, Digital Indicating Conductivity Meter.

This manual contains instructions for the mounting, functions, operations and notes when operating the AER-102-ECH. To ensure safe and correct use, thoroughly read and understand this manual before using this instrument.

To prevent accidents arising from the misuse of this instrument, please ensure the operator receives this manual.

Indication	4	Π	- [2	Ξ	Ч	5	5	7	8	9	E	F
Number, °C/°F	-1	0	1	2	3	4	5	6	7	8	9	°C	°F
Indication	R	Ь	Ĺ	d	Ε	F	5	Н	1	1	ĸ	L	M
Alphabet	А	В	С	D	Е	F	G	Н	I	J	Κ	L	М
Indication	N	o	P		R	5	<i>Г</i>	Ц	1,	K	X	Н	ž
Alphabet	Ν	0	Р	Q	R	S	Т	U	V	W	Х	Υ	Z

Characters Used in This Manual

▲ Caution

- This instrument should be used in accordance with the specifications described in the manual. If it is not used according to the specifications, it may malfunction or cause a fire.
- Be sure to follow all of the warnings, cautions and notices. If they are not observed, serious injury or malfunction may occur.
- The contents of this instruction manual are subject to change without notice.
- Care has been taken to ensure that the contents of this instruction manual are correct, but if there are any doubts, mistakes or questions, please inform our sales department.
- This instrument is designed to be installed through a control panel indoors. If it is not, measures must be taken to ensure that the operator cannot touch power terminals or other high voltage sections.
- Any unauthorized transfer or copying of this document, in part or in whole, is prohibited.
- Shinko Technos Co., Ltd. is not liable for any damage or secondary damage(s) incurred as a result of using this product, including any indirect damage.

Safety Precautions (Be sure to read these precautions before using our products.)

The safety precautions are classified into 2 categories: "Warning" and "Caution".

Depending on the circumstances, procedures indicated by \triangle Caution may result in serious consequences, so be sure to follow the directions for usage.

Warning Procedures which may lead to dangerous conditions and cause death or serious injury, if not carried out properly.

Procedures which may lead to dangerous conditions and cause superficial to medium injury or physical damage or may degrade or damage the product, if not carried out properly.

Warning

- To prevent an electric shock or fire, only Shinko or other qualified service personnel may handle the inner assembly.
- To prevent an electric shock, fire or damage to the instrument, parts replacement may only be undertaken by Shinko or other gualified service personnel.

SAFETY PRECAUTIONS

- To ensure safe and correct use, thoroughly read and understand this manual before using this instrument.
- This instrument is intended to be used for measuring equipment. Verify correct usage after purpose-of-use consultation with our agency or main office. (Never use this instrument for medical purposes with which human lives are involved.)
- Proper periodic maintenance is also required.
- This instrument must be used under the conditions and environment described in this manual. Shinko Technos Co., Ltd. does not accept liability for any injury, loss of life or damage occurring due to the instrument being used under conditions not otherwise stated in this manual.

Meaning of Warning Message on Model Label

Caution

If do not handle this instrument correctly, may suffer minor or moderate injury or property damage due to fire, malfunction, or electric shock. Please read this manual carefully and fully understand it before using it.

Caution with Respect to Export Trade Control Ordinance

To avoid this instrument from being used as a component in, or as being utilized in the manufacture of weapons of mass destruction (i.e. military applications, military equipment, etc.), please investigate the end users and the final use of this instrument. In the case of resale, ensure that this instrument is not illegally exported.

1. Installation Precautions

Caution

This instrument is intended to be used under the following environmental conditions (IEC61010-1): Overvoltage category II, Pollution degree 2

Ensure the mounting location corresponds to the following conditions:

- A minimum of dust, and an absence of corrosive gases
- No flammable, explosive gases
- No mechanical vibrations or shocks
- No exposure to direct sunlight, an ambient temperature of 0 to 50° C (32 to 122° F) that does not change rapidly, and no icing
- An ambient non-condensing humidity of 35 to 85 %RH
- No large capacity electromagnetic switches or cables through which large current is flowing.
- No water, oil, chemicals or the vapors of these substances can come into direct contact with the unit.
- If the AER-102-ECH is mounted through the face of a control panel, the ambient temperature of the unit not the ambient temperature of the control panel must be kept under 50°C. Otherwise the life of electronic parts (especially electrolytic capacitors) of the unit will be shortened.

Note: Do not install this instrument on or near flammable material even though the case of this instrument is made of flame-resistant resin.

2. Wiring Precautions

▲ Caution

- Do not leave wire remnants in the instrument, as they could cause a fire or a malfunction.
- Use a solderless terminal with an insulation sleeve in which the M3 screw fits when wiring the AER-102-ECH.
- The terminal block of this instrument is designed to be wired from the left side. The lead wire must be inserted from the left side of the terminal, and fastened with the terminal screw.
- Tighten the terminal screw using the specified torque. If excessive force is applied to the screw when tightening, the terminal screw or the case may be damaged.
- This instrument does not have a built-in power switch, circuit breaker and fuse. It is necessary to install a power switch, circuit breaker and fuse near the instrument. (Recommended fuse: Time-lag fuse, rated voltage 250 V AC, rated current 2 A)
- For a 24 V AC/DC power source, do not confuse polarity when using direct current (DC).
- Be sure to connect the ground terminal to earth for safety (D-class grounding). Keep the grounding of this unit separate from other electrical devices, such as motors.
- Do not apply a commercial power source to the sensor which is connected to the input terminal nor allow the power source to come into contact with the sensor.
- Use the 4-electrode Conductivity Sensor in accordance with the sensor input specifications of the AER-102-ECH.
- Keep the input wires and power lines separate.

Note about 4-Electrode Conductivity Sensor Cable

The 4-electrode Conductivity Sensor cable is a highly-insulated (electrical) cable. Please handle it with utmost care as follows.

• Do not allow terminals and socket of the 4-electrode Conductivity Sensor cable to come in contact with moisture or oil of any kind. Likewise, ensure fingers are clean,

otherwise the insulation will deteriorate, resulting in unstable indication. Be sure to keep the cable dry and clean at all times.

- If the cable is stained, clean it with alcohol, and dry it completely.
- For calibration or electrode checking/replacement, the 4-electrode Conductivity Sensor cable should be wired with sufficient length.
- Keep the 4-electrode Conductivity Sensor cable and junction cable away from electrical devices, such as motors or their power lines from which inductive interference emanates.

Connection

The 4-electrode Conductivity Sensor cable has the following terminals.

Code	Terminal
1	Conductivity sensor terminal
2	Conductivity sensor terminal
3	Conductivity sensor terminal
4	Conductivity sensor terminal
A, B	Temperature compensation sensor terminals [Pt100 (2-wire), Pt1000]
(T, T)	
A, B, B	Temperature compensation sensor terminals [Pt100 (3-wire)]
E	Shield wire terminal

For the electrode with No Temperature Compensation, A, B (T, T) or A, B, B cables are not available.

E cables are available depending on the sensor type.

During operation, the Conductivity/Temperature Display may become abnormal or unstable due to inductive interference or noise. In this case, try [Grounding of shield wire terminal (E) (P.66)]

3. Operation and Maintenance Precautions

Caution

- Do not touch live terminals. This may cause an electric shock or problems in operation.
- Turn the power supply to the instrument OFF when retightening the terminal or cleaning.

Working on or touching the terminal with the power switched ON may result in severe injury or death due to electric shock.

- Use a soft, dry cloth when cleaning the instrument. (Alcohol based substances may tarnish or deface the unit.)
- As the display section is vulnerable, be careful not to put pressure on, scratch or strike it with a hard object.

4. Compliance with Safety Standards

1 Caution

- Always install the recommended fuse described in this manual externally.
- If the instrument is used in a manner not specified by the manufacturer, the protection provided by the instrument may be impaired.
- Use equipment that is reinforced-insulated or double-insulated from the primary power supply for external circuits connected to this instrument.
- When using this product as a UL certified product, use a power supply conforming to Class 2 or LIM for the external circuit connected to the product.

Contents

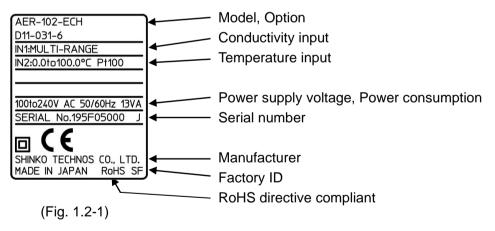
	Page
1. Model	8
1.1 Model	-
1.2 How to Read the Model Label	
2. Names and Functions of Instrument	9
3. Mounting to the Control Panel	10
3.1 Site Selection	10
3.2 External Dimensions (Scale: mm)	
3.3 Panel Cutout (Scale: mm)	
3.4 Mounting and Removal	
4. Wiring	
4.1 Lead Wire Solderless Terminal	
4.2 Terminal Arrangement	
5. Outline of Key Operation and Setting Groups	
5.1 Outline of Key Operation	
5.2 Setting Groups	
6. Key Operation Flowchart	
7. Setup	
7.1 Turn the Power Supply to the AER-102-ECH ON	
7.2 Conductivity Input Group	
7.3 Temperature Input Group 7.4 EVT1 Action Group	
7.5 EVT2 Action Group	
7.6 EVT3 Action Group	
7.7 EVT4 Action Group	35
7.8 Basic Function Group	36
8. Calibration	42
8.1 Conductivity Calibration Mode	
8.2 Temperature Calibration Mode	
8.3 Transmission Output 1 Adjustment Mode	
8.4 Transmission Output 2 Adjustment Mode	
9. Measurement	
9.1 Starting Measurement 9.2 EVT1 to EVT4 Outputs	
9.3 Error Output	
9.4 Fail Output	
9.5 Conductivity Input Error Alarm	
9.6 Cycle Automatic Variable Function	52
9.7 Error Code during Measurement	
9.8 Setting EVT1 to EVT4 Values	
9.9 Transmission Output 1 and 2	
10. Specifications	
10.1 Standard Specifications	
10.2 Optional Specifications	

11. Troubleshooting	. 65
11.1 Indication	65
11.2 Key Operation	66
12. Temperature Compensation Method	. 67
12.1 Temperature Compensation Based on the Temperature Characteristics of NaCI	67
12.2 How to Input Temperature Coefficient	68
13. Character Tables	. 70
13.1 Setting Group List	70
13.2 Temperature Calibration Mode	
13.3 Conductivity Calibration Mode	70
13.4 Transmission Output 1 Adjustment Mode	72
13.5 Transmission Output 2 Adjustment Mode	72
13.6 Simple Setting Mode	72
13.7 Conductivity Input Group	73
13.8 Temperature Input Group	75
13.9 EVT1 Action Group	76
13.10 EVT2 Action Group	78
13.11 EVT3 Action Group	80
13.12 EVT4 Action Group	82
13.13 Basic Function Group	84
13.14 Error Code List	87

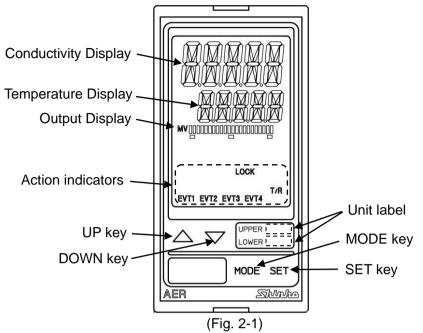
1. Model

1.1 Model

AER-10	2-	EC	Н		,		
Input Points	2					2 points	
						4-electrode Conductivity Sensor	
Input		EC				(Temperature element Pt100) (*1)	
Input		EC				4-electrode Conductivity Sensor	
						(Temperature element Pt1000) (*1)	
Concentration H			High concentration				
Dower oupply:	volto	a 0				100 to 240 V AC (standard)	
Power supply	voita	ge		1		24 V AC/DC (*2)	
Option		C5	Serial communication RS-485				
			EVT3	EVT3, EVT4 outputs (Contact output 3, 4)			
				TA2	Transmission output 2 (*3)		


(*1) This input temperature specification was specified at the time of ordering.

(*2) Power supply voltage 100 to 240 V AC is standard. When ordering 24 V AC/DC, enter "1" in Power supply voltage, after 'ECH'.


(*3) If Transmission output 2 (TA2 option) is ordered, the EVT1 cannot be added.

1.2 How to Read the Model Label

The model label is attached to the left side of the case.

2. Names and Functions of Instrument

Displays

Conductivity	Conductivity or characters in setting mode are indicated in red/green/orange.
Display	Indications differ depending on the selections in [Backlight selection (p.40)]
	and [Conductivity color (p.40)].
Temperature	Temperature or values in setting mode are indicated in green.
Display	Indications differ depending on the selections in [Backlight selection (p.40)].
Output	Backlight green
Display	The bar graph is lit corresponding to the transmission output.
. ,	Indications differ depending on the selections in [Bar graph indication (p.41)].

Action Indicators (Backlight orange)

EVT1	Lights up when EVT1 output (Contact output 1) is ON.
EVT2	Lights up when EVT2 output (Contact output 2) is ON.
EVT3	Lights up when EVT3 output (Contact output 3) (EVT3 option) is ON.
EVT4	Lights up when EVT4 output (Contact output 4) (EVT3 option) is ON.
T/R	Lights up during Serial communication (C5 option) TX output (transmitting).
LOCK	Lights up when Lock 1, Lock 2 or Lock 3 is selected.

Unit label

UPPER	Attach the user's unit of Conductivity Display from the included unit labels if necessary.
LOWER	Attach the user's unit of Temperature Display from the included unit labels if necessary.

Keys

\triangle	UP key	Increases the numeric value.		
\bigtriangledown	DOWN key	creases the numeric value.		
MODE	MODE key	Selects a group.		
SET	SET key	Switches setting modes, and registers the set value.		

3. Mounting to the Control Panel

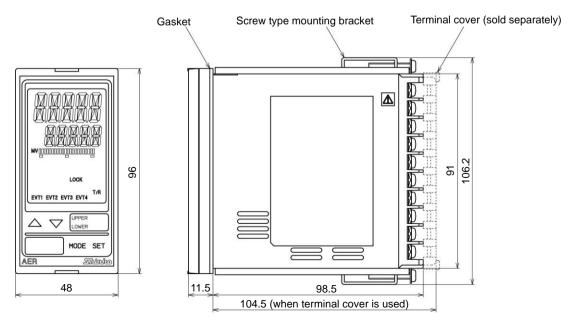
3.1 Site Selection

A Caution

Use within the following temperature and humidity ranges.

Temperature: 0 to 50°C (32 to 122°F) (No icing)

Humidity: 35 to 85 %RH (Non-condensing)

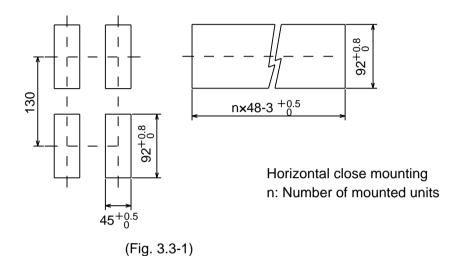

If AER-102-ECH is mounted through the face of a control panel, the ambient temperature of the unit – not the ambient temperature of the control panel – must be kept under 50°C, otherwise the life of electronic parts (especially electrolytic capacitors) of the unit will be shortened.

This instrument is intended to be used under the following environmental conditions (IEC61010-1): Overvoltage category II, Pollution degree 2

Ensure the mounting location corresponds to the following conditions:

- · A minimum of dust, and an absence of corrosive gases
- No flammable, explosive gases
- No mechanical vibrations or shocks
- No exposure to direct sunlight, an ambient temperature of 0 to 50 $^\circ C$ (32 to 122 $^\circ F)$ that does not change rapidly
- An ambient non-condensing humidity of 35 to 85 %RH
- No large capacity electromagnetic switches or cables through which large current is flowing
- No water, oil, chemicals or the vapors of these substances can come into direct contact with the unit

3.2 External Dimensions (Scale: mm)



(Fig. 3.2-1)

3.3 Panel Cutout (Scale: mm)

1 Caution

If horizonal close mounting is used for the unit, IP66 specification (Drip-proof/ Dust-proof) may be compromised, and all warranties will be invalidated.

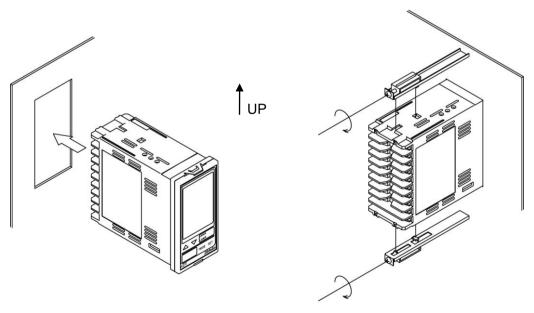
11

3.4 Mounting and Removal

1 Caution

As the case is made of resin, do not use excessive force while screwing in the mounting bracket, or the case or mounting brackets could be damaged. The tightening torque should be 0.12 N•m.

How to mount the unit


Mount the unit vertically to the flat, rigid panel to ensure it adheres to the Drip-proof/Dust-proof specification (IP66).

Mountable panel thickness: 1 to 8 mm

- (1) Insert the unit from the front side of the panel.
- (2) Attach the mounting brackets by the holes at the top and bottom of the case, and secure the unit in place with the screws.

How to remove the unit

- (1) Turn the power to the unit OFF, and disconnect all wires before removing the unit.
- (2) Loosen the screws of the mounting brackets, and remove the mounting brackets.
- (3) Pull the unit out from the front of the panel.

(Fig. 3.4-1)

4. Wiring

Varning

Turn the power supply to the instrument off before wiring or checking. Working on or touching the terminal with the power switched on may result in severe injury or death due to electrical shock.

Caution

- Do not leave wire remnants in the instrument, as they could cause a fire or a malfunction.
- Use a solderless terminal with an insulation sleeve in which the M3 screw fits when wiring the AER-102-ECH.
- The terminal block of this instrument is designed to be wired from the left side. The lead wire must be inserted from the left side of the terminal, and fastened with the terminal screw.
- Tighten the terminal screw using the specified torque. If excessive force is applied to the screw when tightening, the terminal screw may be damaged.
- This instrument does not have a built-in power switch, circuit breaker and fuse. It is necessary to install a power switch, circuit breaker and fuse near the instrument. (Recommended fuse: Time-lag fuse, rated voltage 250 V AC, rated current 2 A)
- For a 24 V AC/DC power source, do not confuse polarity when using direct current (DC).
- Be sure to connect the ground terminal to earth for safety (D-class grounding). Keep the grounding of this unit separate from other electrical devices, such as motors.
- Do not apply a commercial power source to the sensor which is connected to the input terminal nor allow the power source to come into contact with the sensor.
- Use the 4-electrode Conductivity Sensor in accordance with the sensor input specifications of this unit.
- Keep the input wires and power lines separate.

Note about the 4-Electrode Conductivity Sensor Cable

The 4-electrode Conductivity Sensor cable is a highly-insulated (electrical) cable. Please handle it with utmost care as follows.

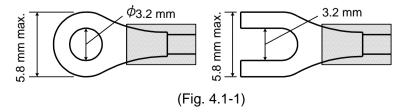
- Do not allow terminals and socket of the 4-electrode Conductivity Sensor cable to come in contact with moisture or oil of any kind. Likewise, ensure fingers are clean, otherwise the insulation will deteriorate, resulting in unstable indication.
 Be sure to keep the cable dry and clean at all times.
 If the cable is stained, clean it with alcohol, and dry it completely.
- For calibration or electrode checking/replacement, the 4-electrode Conductivity Sensor cable should be wired with sufficient length.
- Keep the 4-electrode Conductivity Sensor cable and junction cable away from electrical devices, such as motors or their power lines from which inductive interference emanates.

Connection

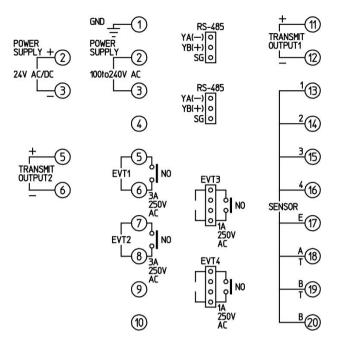
The 4-electrode Conductivity Sensor cable has the following terminals.

Code	Terminal
1	Conductivity sensor terminal
2	Conductivity sensor terminal
3	Conductivity sensor terminal
4	Conductivity sensor terminal
A, B (T, T)	Temperature compensation sensor terminals [Pt100 (2-wire), Pt1000]
A, B, B	Temperature compensation sensor terminals [Pt100 (3-wire)]
E	Shield wire terminal

For the electrode with No Temperature Compensation, A, B (T, T) or A, B, B cables are not available.


E cables are available depending on the sensor type.

During operation, the Conductivity/Temperature Display may become abnormal or unstable due to inductive interference or noise. In this case, try [Grounding of shield wire terminal (E) (P.66)].


4.1 Lead Wire Solderless Terminal

Use a solderless terminal with an insulation sleeve in which an M3 screw fits as follows. The tightening torque should be 0.63 N•m.

Solderless Terminal	Manufacturer	Model	Tightening Torque
Vhree	NICHIFU TERMINAL INDUSTRIES CO., LTD.	TMEX1.25Y-3	
Y-type	J.S.TMFG.CO.,LTD.	VD1.25-B3A	0.62 Nom
Ring-type	NICHIFU TERMINAL INDUSTRIES CO., LTD.	TMEX1.25-3	0.63 N•m
	J.S.TMFG.CO.,LTD.	V1.25-3	

4.2 Terminal Arrangement

(Fig. 4.2-1)

GND	Ground
POWER	100 to 240 V AC or 24 V AC/DC (when 1 is added after 'ECH'.
SUPPLY	For 24 V DC, ensure polarity is correct.
EVT1	EVT1 output (Contact output 1)
EVT2	EVT2 output (Contact output 2)
TRANSMIT	Transmission output 1
OUTPUT1	
TRANSMIT	Transmission output 2 (TA2 option)
OUTPUT2	
1, 2, 3, 4	Conductivity sensor terminals 1, 2, 3, 4
Е	Conductivity sensor shield wire terminal
A, B (T, T)	Temperature compensation sensor terminals [Pt100 (2-wire), Pt1000]
A, B, B	Temperature compensation sensor terminals [Pt100 (3-wire)]
RS-485	Serial communication RS-485 (C5 option)
	2 connectors are wired internally.
	Use the included wire harnesses C5J and C0J.
EVT3	EVT3 output (Contact output 3) (EVT3 option)
	Use the included wire harness HBJ.
EVT4	EVT4 output (Contact output 4) (EVT3 option)
	Use the included wire harness HBJ.

5. Outline of Key Operation and Setting Groups

5.1 Outline of Key Operation

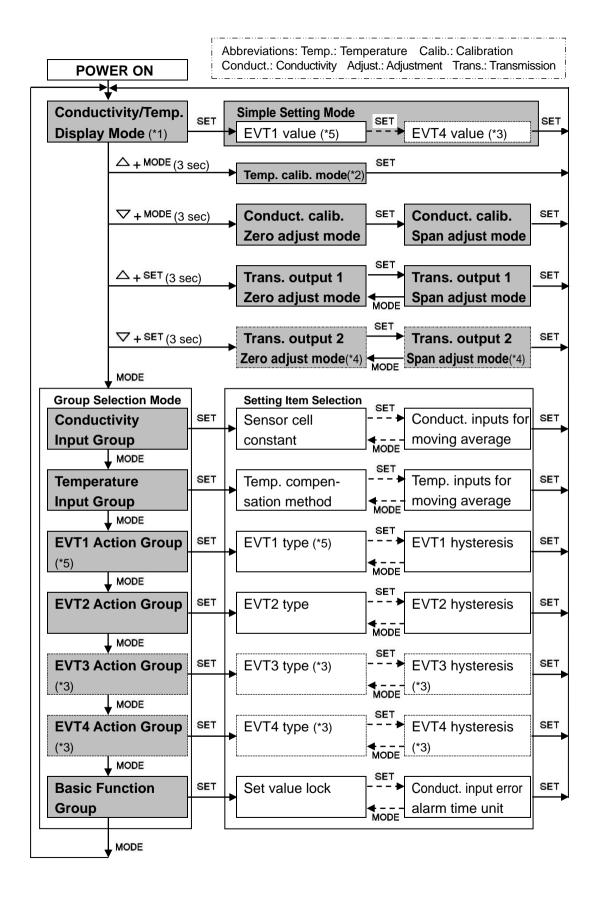
There are 2 setting modes: Simple Setting Mode, and Group Selection Mode in which setting items are divided into groups.

To enter Simple Setting Mode, press the SET key in Conductivity/Temperature Display Mode.

To enter Group Selection Mode, press the MODE key in Conductivity/Temperature Display Mode.

Select a group with the MODE key, and press the SET key. The unit enters each setting item. To set each item, use the \triangle or ∇ key, and register the set value with the SET key.

5.2 Setting Groups


Setting groups are described in the next page.

[About each mode and setting items]

- (*1) In Conductivity/Temperature Display Mode, measurement starts, indicating the item selected in [Backlight selection (p.40)] in the Basic Function Group.
- (*2) If ロデチニン (No temperature compensation) is selected in [Temperature compensation method (p.25)] in the Temperature Input group, and if ロデチニン (Unlit) or 'っ, ゴロン (Reference temperature) is selected in [Temperature Display when no temperature compensation (p.41)] in the Basic Function group, the unit will not enter Temperature Calibration mode.
- (*3) Available when the EVT3, EVT4 outputs (EVT3 option) are/is ordered.
- (*4) Available when Transmission output 2 (TA2 option) is ordered.
- (*5) Not available if Transmission output 2 (TA2 option) is ordered.

[Key Operation]

- • △ + MODE (3 sec): Press and hold the △ key and MODE key (in that order) together for 3 seconds. The unit will proceed to Temperature Calibration mode.
- ▼+MODE (3 sec): Press and hold the ▼ key and MODE key (in that order) together for 3 seconds. The unit will proceed to Conductivity Calibration Zero adjustment mode.
- △ + SET (3 sec): Press the △ and SET key (in that order) together for 3 seconds. The unit will proceed to Transmission output 1 Zero adjustment mode.
- ▽ + SET (3 sec): Press the ▽ and SET key (in that order) together for 3 seconds. The unit will proceed to Transmission output 2 Zero adjustment mode.
- MODE or SET: Press the MODE or SET key. The unit will proceed to the next setting item, illustrated by an arrow.
- SET or MODE: Press the SET or MODE key until the desired setting mode appears.
- To revert to Conductivity/Temperature Display Mode, press and hold the MODE key for 3 seconds while in any mode.

6. Key Operation Flowchart

(2)

		ConductConductivity
POWER ON		
	\triangle + MODE (3 sec)	
Conductivity/	Temperature	SET
250 Temperature	calibration mode (*2)	►
Display Mode(*1)	∇ + MODE (3 sec)	-
	RadZ Conduct. calibration	SET RdJG Conduct. calibration SET
	Zero adjustment mode	□ (□□□□ Span adjustment mode
	△ + SET (3 Sec)	SET
	RJZ III Transmission output 1	$\blacksquare R \downarrow \neg I \square \text{Transmission output 1} SET$
	Zero adjustment mode	▲ GDD Span adjustment mode
	¬ + SET (3 sec)	SET
	RUZE Transmission output 2	
	DDD Zero adjustment mode	Span adjustment mode
		MODE
SET MODE		MODE, $F_{N_{c}, \vec{c}}$ Temperature Input MODE
SET	<i>F.N.E.</i> Conductivity Input	
↓	Group	Group
Simple setting Mode	SET	SET
E 与ビ / EVT1 value	ELL Sensor cell constant	「 ニ M Temperature compen-
<i>0.00</i> P.53	P.22	N用∈L□ sation method (*2) P.25
SET	SET MODE	SET MODE
EVT2 value	Cell constant	<i>K∈ □E</i> Temperature coefficient
P.53	Correction value P.22	2.200 P.25
EVT3 value		
P.54	P.22	P.25
↓ SET		
<i>E 与に 当</i> EVT4 value	MRNE Measurement range	dP2 Decimal point place
P.54	P.23	P.25
SET	SET MODE	SET MODE
	「ゴーンド」 TDS conversion factor	ENECT Pt100 input wire type
	0.50 P.24	
	FI T I Conductivity input filter	
		5
	time constant P.24	
	SET MODE	
	E ら ロ Conductivity input	$c \neg E c \square$ Cable cross-section
	Sensor correction P.24	0.30 area P.26
		SET MODE
	5-25-20 3-electrode Conductivity	FIFE Temperature input filter
	Sensor resistance P.24	
	<i>L L L L L L L L L L</i>	<i>2□</i> moving average P.26
	↓ SET	

[About Setting Items]

E 51/ 1

nnn

• Upper left:	Conductivity	Display:	Indicates th	na sattina	itom (characters
	CONTRACTIVITY	Display.	inuluates ti	ie seund	ILEIII (unanauters.

• Lower left: Temperature Display: Indicates the factory default.

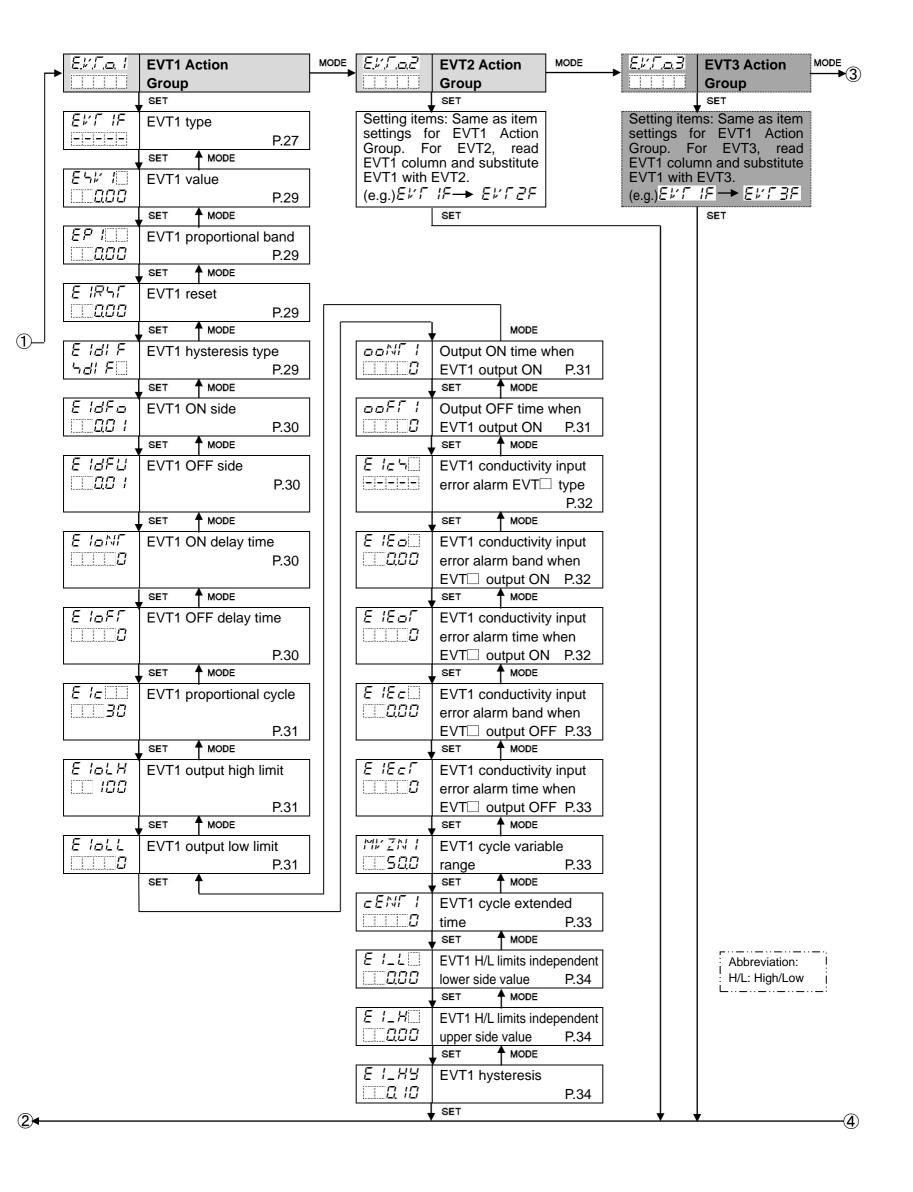
	P.53
E51/3	EVT3 value
0.00	P.54

EVT1 value

• Right side: Indicates the setting item and reference page.

Setting item in shaded section will be displayed only when the corresponding option is ordered.

[About Each Mode and Setting Items]


(*1) Measurement starts, indicating the item selected in [Backlight selection (p.40)] in the Basic Function Group.

(*2) If a F (No temperature compensation) is selected in [Temperature compensation method (p.25)] in the Temperature Input Group, and if a FFIII (Unlit) or 5 a (Reference temperature) is selected in [Temperature Display when no temperature compensation (P.41)] in the Basic Function Group, the unit does not move to Temperature Calibration mode.

[About Key Operation]

• \triangle + MODE (3 sec): Press and hold the \triangle and MODE keys (in that order) together for 3 sec. The unit enters the next mode.

- ∇ + MODE (3 sec): Press and hold the ∇ and MODE keys (in that order) together for 3 sec. The unit enters the next mode.
- \triangle + SET (3 sec): Press and hold the \triangle and SET keys (in that order) together for 3 sec. The unit enters the next mode.
- ∇ + SET (3 sec): Press and hold the ∇ and SET keys (in that order) together for 3 sec. The unit enters the next mode.
- SET, MODE Press the SET or MODE key. The unit will proceed to the next setting item, illustrated by an arrow.
- To revert to Conductivity/Temperature Display Mode, press and hold the MODE key for 3 seconds while in any mode.

$(3) \rightarrow \frac{E \times \Gamma_{a} + EVT4 \text{ Action}}{E}$		Basic Function Group	MODE	
		SET		
Setting items: Same as item	Lock	Set value lock		
settings for EVT1 Action Group. For EVT4, read		P.36		
EVT1 column and substitute EVT1 with EVT4.	EMAL	SET MODE Communication		
$(e.g.) E V \Gamma IF \rightarrow E V \Gamma YF$	Naml	protocol P.36		
SET				
	e MNo	Instrument number P.36		
	<u> </u>	SET MODE		
	<u>-M5P</u>	Communication speed		
	98	P.37		
	EMFT	Data bit/Parity	FRES2	Transmission output 2 status
	7E V N	P.37	BEFH	when calibrating P.39
	5M41	SET MODE	FRHE2	SET MODE
		Stop bit P.37		Transmission output 2 value HOLD when calibrating P.39
	· · · · · · · · · · · · · · · · · · ·	SET MODE		
	[Roh Ec	Transmission output 1		Backlight selection (*1)
		type P.37 set Mode		P.40
	FRLH I	Transmission output 1	col R	Conductivity color
	2000	high limit P.38 set ♠ море	REd	P.40
	TRLL I	Transmission output 1	cLP	Conductivity color
		low limit P.38		reference value P.40
	FR652		ELRG	SET MODE
		Transmission output 2 type P.38		Conductivity color range P.40
				SET MODE
	Г <i>RLH2</i> ПОДО	Transmission output 2		Backlight time
		high limit P.38 set ↑ MODE		P.41
	<u>FRLL2</u>	Transmission output 2	6ERSL	Bar graph indication
		Iow limit P.39 SET ♠ MODE		P.41
	TRES 1	Transmission output 1 status	I NERR	EVT output when input
	bEFH⊡	when calibrating P.39		errors occur P.41
	TRAE I	SET MODE	oF dP	SET MODE
		Transmission output 1 value HOLD when calibrating P.39		Temp. Display when no temp. compensation P.41
	L	SET		SET MODE
			M_ \ \{E_	Conductivity input error
				alarm time unit P.41
				Abbreviation:
				Temp.: Temperature
(4)◀				· · · · · · · · · · · · · · · · · · ·

7. Setup

Setup should be done before using this instrument according to the user's conditions:
Setting the Conductivity input, Temperature input, EVT1, EVT2, EVT3 (EVT3 option) and EVT4 (EVT3 option) types, Serial communication (C5 option), Transmission output 1, Transmission output 2 (TA2 option), and Indication settings (Backlight selection, Conductivity color, etc.)

Setup can be conducted in the Conductivity Input Group, Temperature Input Group, EVT1, EVT2, EVT3, EVT4 Action Groups and Basic Function Group.

If the user's specification is the same as the factory default of the AER-102-ECH, or if setup has already been complete, it is not necessary to set up the instrument. Proceed to Section "8. Calibration (p.42)".

7.1 Turn the Power Supply to the AER-102-ECH ON.

For approx. 4 seconds after the power is switched ON, the following characters are indicated on the Conductivity Display and Temperature Display.

Display	Character	Measurement Unit			
	caNK[]	Conductivity (mS/cm, μ S/cm)			
	5/	Conductivity (S/m, mS/m)			
Conductivity	4 <i>ER</i>	Seawater salinity	(%)		
Display	SALF	NaCl salinity (%)	NaCl salinity (%)		
	ГdЪ	TDS conversion (g/L, mg/L)			
		Input	Selection Item in		
Display	splay Character Temperatu		[Pt100 input wire type]		
		Spec. (*)	(p.26)		
Temperature Display	PF 2	D#100	$E \subseteq RE$: 2-wire type		
	PFIB	Pt100	E: 3-wire type		
	PF 18	Pt1000			

(*) This input temperature specification was specified at the time of ordering.

During this time, all outputs are in OFF status, and action indicators are turned off. After that, measurement starts, indicating the item selected in [Backlight selection (p.40)].

This status is called Conductivity/Temperature Display Mode.

7.2 Conductivity Input Group

To enter the Conductivity Input Group, follow the procedure below.

- ① F.N.c. I□ Press the MODE key in Conductivity/Temperature Display Mode.
- ② *⊑ELL* Press the ^{SET} key.

The unit proceeds to the Conductivity Input Group, and "Sensor cell constant" will appear.

Character	Setting Item, Function, Setting Range	Factory Default		
cELL	Sensor cell constant	1.0/cm		
	 Selects the sensor cell constant. 			
	If cell constant is changed, Conducti			
	adjustment values, and Cell constan cleared.	t correction value will be		
	Set the Cell constant correction valu	e again, and re-calibrate		
	Conductivity Zero and Span adjustm			
	•			
	「二」 <i>I</i> Ω日 : 10.0/cm			
coEF	Cell constant correction value	1.000		
000	Sets sensor cell constant correction va			
	$\Box \Box E F$ and conductivity value are d	isplayed alternately.		
	Setting range: 0.001 to 5.000	Conductivity (mC/cm //C/cm)		
	 Measurement unit Selects the conductivity unit. 	Conductivity (mS/cm, μ S/cm)		
	If conductivity unit is changed, Cond	luctivity Zero and Span		
	adjustment values will be cleared.			
	Re-calibrate Conductivity Zero and Span adjustment values.			
	However, if the following is changed, Conductivity Span			
	adjustment value will not be cleared. Re-calibrate only			
	Conductivity Zero adjustment value.			
	 When changing from Conductivity salinity (%) or NaCl salinity (%) 	(mS/cm, S/m) to Seawater		
	When changing from Seawater sal	inity (%) or NaCl salinity (%)		
	to Conductivity (mS/cm, S/m)			
	When changing from Seawater sal	inity (%) to NaCl salinity (%)		
	• $coNV$: : Conductivity (mS/cm, μ S/	/cm)		
	: Conductivity (S/m, mS/m)			
	$\neg ER$: Seawater salinity (%)			
	ら月上「□ : NaCl salinity (%)			
	「」」:TDS conversion (g/L, mg/	L)		

Character	Setting Item, Function, Set	tting Range	Factory Default	
MRNE	Measurement range		20.00 mS/cm	
2000	 Selects the conductivity measurement range. If measurement range is changed, Conductivity Zero and Span adjustment values will be cleared. Re-calibrate the Conductivity Zero and Span adjustment values. Selection item differs depending on the selection of sensor cell constant and measurement unit. When sensor cell constant 1.0/cm is selected: (Table 7.2-1) 			
	Measurement Unit	Selection Item	Measurement Range	
		2000	0.00 to 20.00 mS/cm	
		2000	0.0 to 200.0 mS/cm	
		<u> </u>	0.0 to 500.0 mS/cm	
	Conductivity	500	0 to 500 mS/cm	
	(mS/cm, μ S/cm)	2000	0.000 to 2.000 mS/cm	
		5000	0.000 to 5.000 mS/cm	
		5000	0.00 to 50.00 mS/cm	
		2000	0 to 2000 µS/cm	
		5000	0 to 5000 µS/cm	
		2.000	0.000 to 2.000 S/m	
		2000	0.00 to 20.00 S/m	
		<u> </u>	0.00 to 50.00 S/m	
	Conductivity	500	0.0 to 50.0 S/m	
	(S/m, mS/m)	2000	0 to 2000 mS/m	
		<u> </u>	0.000 to 5.000 S/m	
		2000	0.0 to 200.0 mS/m	
		5000	0.0 to 500.0 mS/m	
		200	0.0 to 20.0 g/L	
	TDS conversion	200	0 to 200 g/L	
	(g/L, mg/L)	500	0 to 500 g/L	
	(y/L, IIIy/L)	2000	0 to 2000 mg/L	
		5000	0 to 5000 mg/L	
	Seawater salinity (%)	400	0.00 to 4.00%	
	NaCl salinity (%)	2000	0.00 to 20.00%	

Character	Setting Item, Function, Set	ting Range	Factory Default	
	When sensor cell const (Table 7.2-2)	tant 10.0/cm i	s selected:	
	Measurement Unit	Selection Item	Measurement Range	
	Conductivity	2000	0.0 to 200.0 mS/cm	
	Conductivity (mS/cm, <i>µ</i> S/cm)	5000	0.0 to 500.0 mS/cm	
		2000	0 to 2000 mS/cm	
	Conductivity	2000	0.00 to 20.00 S/m	
	(S/m, mS/m)		0.00 to 50.00 S/m	
		2000	0.0 to 200.0 S/m	
	TDS conversion	200	0 to 200 g/L	
	(g/L, mg/L)	500	0 to 500 g/L	
		2000	0 to 2000 g/L	
	Seawater salinity (%)	400	0.00 to 4.00%	
	NaCl salinity (%)	2000	0.00 to 20.00%	
Г <u>ачк</u>	TDS conversion factor		0.50	
<u> </u>	 Sets TDS conversion factor. Available only when デゴロ [TDS conversion (g/L)] is selected in [Measurement unit]. Setting range: 0.30 to 1.00 			
FI FI		onductivity input filter time constant 0.0 seconds		
00	 Sets Conductivity input filt 			
	•	the value is set too large, it affects EVT action due to the delay of		
	response. Refer to "Conductivity (Ter	mooratura) Eilt	or Time Constant" on p.26	
	Refer to "Conductivity (Temperature) Filter Time Constant" on p.26. Setting range: 0.0 to 10.0 seconds			
ESo	Conductivity input senso		0.00 mS/cm	
0.00	 Sets conductivity input set 			
	This corrects the input value from the conductivity sensor. When a sensor cannot be set at the exact location where measurement is desired, conductivity measured by the sensor may deviate from the conductivity in the measured location. In this case, desired conductivity can be obtained by adding a sensor correction value. However, it is only effective within the measurement range regardless of the sensor correction value. Conductivity after sensor correction= Current conductivity + (Sensor			
	correction value)			
SEFR	 Setting range: ±10% of r 3-electrode Conductivity 			
	resistance	3611201	0Ω	
·iii i	 If the 3-electrode Conductivity Sensor is used, set the resistance value of 3-electrode Conductivity Sensor. 			
	• Setting range: 0 to 100 Ω			

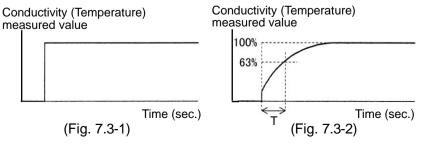
 $(\ensuremath{^*})$ The measurement unit and decimal point place follow the measurement range.

Character	Setting Item, Function, Setting Range	Factory Default
dFer 20	 Conductivity inputs for moving average Sets the number of conductivity inputs used to An average conductivity input value is calculate number of conductivity inputs. The conductivity replaced every input sampling period. However moving average function is disabled in conductivity or in temperature calibration mode. Setting range: 1 to 120 	ated using the selected ty input value is er, the conductivity input

7.3 Temperature Input Group

- To enter the Temperature Input Group, follow the procedure below. ① F.N.c. Press the MODE key twice in Conductivity/Temperature Display Mode. ② T.c.M. Press the SET key.

The unit enters the Temperature Input Group, and "Temperature compensation method" will appear.

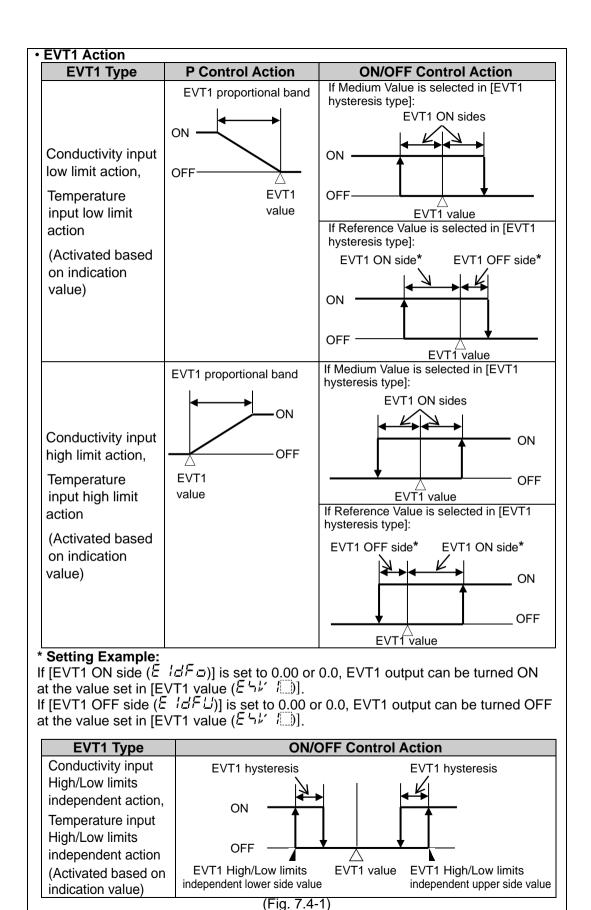

Character	Setting Item, Function, Setting Range	Factory Default	
ΓM	Temperature compensation method	NaCl	
NRcl[]	 Selects Temperature compensation calculation method. Not available if <i>ちとお</i> (Seawater salinity) or <i>ちおとて</i> (NaCl salinity) is selected in [Measurement unit]. <i>N吊こ</i>: Temperature compensation is conducted using temperature characteristics of NaCl. Select when the 		
	main ingredient of salt include 「□□E:: Temperature compensation is of temperature coefficient (%/°C) reference temperature. □FF:::: No temperature compensation	conducted using	
KeoE	Temperature coefficient	2.00 %/°C	
	 Sets Temperature coefficient. If Temperature coefficient is set to 2.00 %/ for most aqueous solutions. If Temperature coefficient of an aqueous s value. If Temperature coefficient is set to 0.00 %/ temperature compensation will be indicate Not available if <i>¬ER</i> (Seawater salin salinity) is selected in [Measurement unit]. Available only when <i>F ⊂ αE</i> is selected compensation method]. Setting range: -5.00 to 5.00 %/°C 	solution is known, set the [/] C, conductivity without ed. ity) or <i>らおとて</i> (NaCl in [Temperature	
SENd.	Reference temperature	25.0℃	
<u> </u>	 Sets the reference temperature for temperature compensation. Not available if っとおいい (Seawater salinity) or ったい (NaCl salinity) is selected in [Measurement unit]. Setting range: 5.0 to 95.0℃ 		
dP2	Decimal point place	1 digit after decimal point	
	 Selects decimal point position to be indica Display. Display. Display. Indicate a construction of the second point 	ited on the Temperature	

Character	Setting Item, Function, Setting Range	Factory Default	
cNEcT	Pt100 input wire type	3-wire type	
BALRE	• Selects the input wire type of Pt100.		
	Not available for 4-electrode Conductivity Sensor (Temperature element		
	Pt1000).	Υ Ι	
	・ <i>己川 常E</i> : 2-wire type		
	BHI RE: 3-wire type		
cR6LE	Cable length correction	0.0 m	
<i>00</i>	 Sets the cable length correction value. 		
	• Available when $\mathcal{E}_{\mathcal{A}\mathcal{B}}^{\mathcal{A}\mathcal{B}} \mathcal{R}\mathcal{E}$ (2-wire type) is selected		
	Not available for 4-electrode Conductivity Sens	or (Temperature element	
	Pt1000).		
	Setting range: 0.0 to 100.0 m	2 00 2	
<u>c 48 c </u>	Cable cross-section area	0.30 mm ²	
030	• Sets the cable cross-section area.		
	• Available when \mathcal{Z}_{ini}^{l} , $\mathcal{R}\mathcal{E}$ (2-wire type) is selected in [Pt100 input wire type]. Not available for 4-electrode Conductivity Sensor (Temperature element		
	Pt1000).		
	• Setting range: 0.10 to 2.00 mm ²		
FIFZ	Temperature input filter time constant	0.0 seconds	
ΔD	• Sets Temperature input filter time constant.		
	If the value is set too large, it affects EVT act	ion due to the delay of	
	response. Refer to "Conductivity (Temperature) F	Filter Time Constant" below.	
	Setting range: 0.0 to 10.0 seconds	1	
dFcf🗌	Temperature inputs for moving average	20	
20	• Sets the number of temperature inputs used to obtain moving average.		
	An average temperature input value is calcul	0	
	number of temperature inputs. The temperat	•	
	replaced every input sampling period. However		
	moving average function is disabled in tempe	erature calibration mode.	
	Setting range: 1 to 120		

Conductivity (Temperature) Filter Time Constant

Even when conductivity (temperature) measured value before filter process changes as shown in (Fig. 7.3-1), if the filter time constant "T" is set, the conductivity (temperature) measured value changes as shown in (Fig. 7.3-2) so that conductivity (temperature) measured value after finishing filter process can reach 63% (of the desired value) after T seconds have passed. If the filter time constant is set too large, it affects EVT action due to the delay of response.

(e.g.) In case the LSD (least significant digit) of the conductivity (temperature) measured value prior to filter process is fluctuating, it can be suppressed by using the filter time constant.

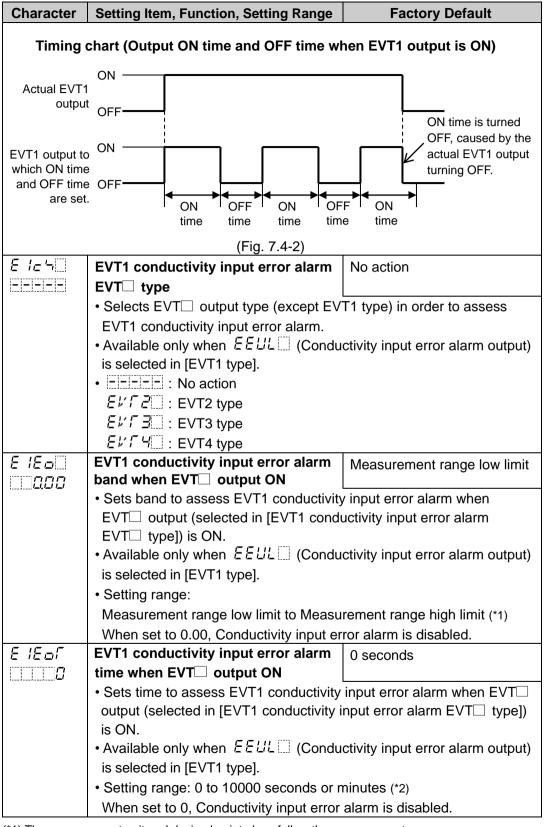

7.4 EVT1 Action Group

To enter the EVT1 Action Group, follow the procedure below.

- If Transmission output 2 (TA2 option) is ordered, this group will not be available.
- ① $E \not \Box \neg \Box$ Press the MODE key 3 times in Conductivity/Temperature Display Mode.
- ② EVT IF Press the SET key.

The unit proceeds to the EVT1 Action Group, and "EVT1 type" will appear.

Character	Setting I	tem, Function, Setting Ran	ge	Factory Default	
EVE IF	EVT1 type			No action	
	 Selects ar 	• Selects an EVT1 output (Contact output 1) type. (Fig. 7.4-1) (p.28)			
	Note:				
	If EVT1 type is changed, EVT1 value defaults to 0.00 or 0.0.				
	• If $\Box F F \Box$ (No temperature compensation) is selected in				
		ure compensation method (
		ven if Temperature input lov			
		is selected.	w mmt c	n remperature input nigh	
	•				
			it action		
		: Conductivity input low limit: Conductivity input high limit			
		: Temperature input low lim			
		: Temperature input high lin			
		: Error output [When the er	for type	e is Error (Table 7.4-1),	
		the output is turned ON.]			
	<i>FRI</i> L : Fail output [When the error type is "Fail" (Table 7.4-1),				
	the output is turned ON.]				
	EEUL : Conductivity input error alarm output				
		: Conductivity input High/Lo			
	FEMHL : Temperature input High/Low limits independent action				
	Error output, Fail output				
	(Table 7.				
	Error	Error		Description	
	Туре	Contents		-	
	Fail			ature sensor lead wire	
			is burnt		
	Fail	short-circuited is short-circuited.			
	Error				
	Error			ed temperature is	
				in 0.0℃.	


E51/ 1	Setting Item, Function, Setting Range	Factory Default		
	EVT1 value	Conductivity input:		
000		Measurement range low limit		
		Temperature input: 0.0℃		
	• Sets EVT1 value. (Fig. 7.4-1) (p.28)			
	Not available if			
	FRLL (Fail output) or $EEUL$ (6	Conductivity input error alarm		
		output) is selected in [EVT1 type].		
	Setting range:			
	Conductivity input: Measurement range low limit to			
	Measurement range high limit (*1)			
– – – – –	Temperature input: 0.0 to 100.0℃ (*2)			
EP 1	EVT1 proportional band	Conductivity input:		
000		Measurement range low limit Temperature input: 0.0℃		
	Sets EV/T1 proportional band (Fig. 7)			
	 Sets EVT1 proportional band. (Fig. 7.4-1) (p.28) ON/OFF control action when set to 0.00 or 0.0. 			
	• Not available if $\Box = \Box = \Box$ (No action), $E R = U \Gamma$ (Error output),			
	FBI L (Fail output) or $EELIL$ (Conductivity input error alarm			
	output) is selected in [EVT1 type].			
	• Setting range:			
	Conductivity input: Measurement range	ge low limit to		
	Measurement range high limit (*1) Temperature input: 0.0 to 100.0°C (*2)			
E IRNE	EVT1 reset	Conductivity input: 0.00 mS/cm		
000		Temperature input: 0.0℃		
	Sets EVT1 reset value.			
	• Not available if (No action)			
	$FBLL \square$ (Fail output) or $EEUL \square$ (Conductivity input error alar			
	output) is selected in [EVT1 type].			
	Not available for the ON/OFF control action.			
	Setting range: Conductivity insult +10% of measure	0		
	Conductivity input: $\pm 10\%$ of measurement span (*1)			
E Idi F	Temperature input: ±10.0°C (*2)			
	EVT1 hysteresis type	Reference Value		
5 <i>81 F</i> □	• Selects EVT1 output hysteresis type (Medium or Reference Value).		
	(Fig. 7.4-1) (p.28)			
	• Not available if (No action)			
	$FRI L \square$ (Fail output) or $EEUL \square$ ((Conductivity input error alarm		
	output) is selected in [EVT1 type]. • Not available for the P control action.			
	• $rac{a}{F}$: Medium Value			
	 ・ この FLL: Medium Value Sets the same value for both ON and OFF sides in relation to EVT1 value. Only ON side needs to be set. 			
	Sets individual values for ON and OFF sides in relation			
	to EVT1 value.			
	Both ON and OFF sides need to be set individually.			
	1) The measurement unit and decimal point place follow the measurement range.			

Character	Setting Item, Function, Setting Range	Factory Default	
E IdFo	EVT1 ON side	Conductivity input: 0.01 mS/cm	
00 1	Temperature input: 1.0℃		
	• Sets the span of EVT1 ON side. (Fig.		
	If		
	span of ON/OFF side will be the same value.		
	• Not available if $\Box = \Box = \Box$ (No action), $ER \Box U \Gamma$ (Error output),		
	FRI L (Fail output) or $EEUL$ (Conductivity input error alarm		
	output) is selected in [EVT1 type].		
	 Not available for the P control action. Setting range: 		
	 Setting range: Conductivity input: 0.00 to 20% of Measurement range high limit (*1) 		
	Temperature input: 0.0 to 10.0°C (*2)		
E IBFU	EVT1 OFF side	Conductivity input: 0.01 mS/cm	
00 1		Temperature input: 1.0°C	
	• Sets the span of EVT1 OFF side. (Fig		
	• Not available if 581 (No action)		
	FRI L (Fail output) or EELIL (Conductivity input error a output) is selected in [EVT1 type].		
		or if $ = d^{\prime} \in \mathbb{E}^{+}$ (Medium Value)	
	 Not available for the P control action, or if cd! F (Medium Values is selected in [EVT1 hysteresis type]. 		
 Selected in [EV11 hysteresis type]. Setting range: Conductivity input: 0.00 to 20% of Measurement range high 			
		asurement range high limit (*1)	
	Temperature input: 0.0 to 10.0°C (*2)		
EIGNE	EVT1 ON delay time	0 seconds	
	 Sets EVT1 ON delay time. 		
	The EVT1 output does not turn ON (u	•	
	ON) until the time set in [EVT1 ON delay time] elapses.		
	• Not available if), ERELII (Error output),	
	FRI L (Fail output) or ÉEUL (Conductivity input error alarm	
	output) is selected in [EVT1 type].		
	• Not available for the P control action.		
Ε ΙΔΕΓ	Setting range: 0 to 10000 seconds EVT1 OFE delay time	0 accordo	
	EVT1 OFF delay time	0 seconds	
\ !!	• Sets EVT1 OFF delay time.	under the conditions of turning	
	The EVT1 output does not turn OFF (OFF) until the time set in [EVT1 OFF		
	• Not available if EEEEE (No action), ERロビ厂 (Error output), FRI L□ (Fail output) or EEUL□ (Conductivity input error alarm		
	output) is selected in [EVT1 type].		
	Not available for the P control action.		
	• Setting range: 0 to 10000 seconds		
	rement unit and decimal point place follow the		

(*1) The measurement unit and decimal point place follow the measurement range.

(*2) The decimal point place does not follow the selection. It is fixed.

Character	Setting Item, Function, Setting Range	Factory Default	
E Ic	EVT1 proportional cycle	30 seconds	
30	Sets EVT1 proportional cycle.		
	・Not available if EIEE (No action), ERロビ (Error output),		
	FRI L (Fail output) or EEUL (Conducti	vity input error alarm	
	output) is selected in [EVT1 type].		
	Not available for the ON/OFF control action.		
EIGLH	Setting range: 1 to 300 seconds EVT1 output high limit	100%	
	Sets EVT1 output high limit value.	100 /8	
	• Sets EVIT output high limit value. • Not available if $\Box = \Box = \Box$ (No action), $ER \Box U\Gamma$ (Error output),		
	FRI L (Fail output) or EEUL (Conducti		
	output) is selected in [EVT1 type].		
	Not available for the ON/OFF control action.		
	Setting range: EVT1 output low limit to 100%		
EloLL	EVT1 output low limit	0%	
	Sets EVT1 output low limit value.		
	・Not available if EEEEE (No action), ERロビー (Error output),		
	<i>FRI</i> L (Fail output) or <i>EEUL</i> (Conductivity input error alarm		
	output) is selected in [EVT1 type].		
	 Not available for the ON/OFF control action. Setting range: 0% to EVT1 output high limit 		
00N[Output ON Time when EVT1 output ON	0 seconds	
	Sets Output ON time when EVT1 output is ON		
	If ON time and OFF time are set, EVT1 output		
	in a configured cycle when EVT1 output is ON. (Fig. 7.4-2) (p.32)		
	• Not available if ELELE (No action), ERaL		
	<i>FRI</i> L□ (Fail output) or <i>EE</i> L/L□ (Conducti	vity input error alarm	
	output) is selected in [EVT1 type].		
	 Not available for P control action. 		
	Setting range: 0 to 10000 seconds		
00FF	Output OFF Time when EVT1 output ON	0 seconds	
<i>D</i>	Sets Output OFF time when EVT1 output is O	N.	
	If ON time and OFF time are set, EVT1 output can be turned ON/OFF		
	in a configured cycle when EVT1 output is ON. (Fig. 7.4-2) (p.32)		
	• Not available if \Box \Box (No action), $E R_{\Box} U U$ (Error output),		
	FRIL (Fail output) or $EEUL$ (Conductivity input error alarm		
	output) is selected in [EVT1 type].		
	Not available for P control action.		
	Setting range: 0 to 10000 seconds		

(*1) The measurement unit and decimal point place follow the measurement range.

(*2) Time unit follows the selection in [Conductivity input error alarm time unit].

Character	Setting Item, Function, Setting Range	Factory Default	
ElEc	EVT1 conductivity input error alarm	Measurement range low limit	
000	band when EVT output OFF		
	• Sets band to assess EVT1 conductivity input error alarm when EVT \Box		
	output (selected in [EVT1 conductivity input error alarm EVT type])		
	is OFF.		
	• Available only when \mathcal{EEUL} (Conductivity input error alarm output)		
	is selected in [EVT1 type].		
	• Setting range:		
	Measurement range low limit to Measurement range high limit (*1)		
	When set to 0.00, Conductivity input error alarm is disabled.		
EIEcr	EVT1 conductivity input error alarm	0 seconds	
	time when EVT output OFF		
	Sets time to assess EVT1 conductivity	-	
	output (selected in [EVT1 conductivity input error alarm EVT type])		
	is OFF.		
	• Available only when \mathcal{EEUL} (Conductivity input error alarm output)		
	is selected in [EVT1 type].		
	Setting range: 0 to 10000 seconds or minutes (*2)		
	When set to 0, Conductivity input error alarm is disabled.		
MKZN I	EVT1 cycle variable range	50.0%	
500	Sets EVT1 cycle variable range.		
	• Not available if (No action),		
	FRI L (Fail output) or EEUL (C	onductivity input error alarm	
	output) is selected in [EVT1 type].		
	Not available for the ON/OFF control action.		
ENT I	Setting range: 1.0 to 100.0%	0 secondo	
	EVT1 cycle extended time	0 seconds	
1	 Sets EVT1 cycle extended time. Not available if (No action), ERロロー (Error output), 		
	$FRI \perp$ (Fail output) or $EEUL$ (Conductivity input error alarm		
	output) is selected in [EVT1 type].		
	• Not available for the ON/OFF control action.		
	Setting range: 0 to 300 seconds		

(*1) The measurement unit and decimal point place follow the measurement range.

(*2) Time unit follows the selection in [Conductivity input error alarm time unit].

Character	Setting Item, Function, Setting Range	Factory Default		
EILL	EVT1 High/Low limits independent			
000	lower side value	Measurement range low limit		
		Temperature input: 0.0°C		
	Sets the lower side value of EVT1 H	ligh/Low limits independent		
	action. (Fig. 7.4-1)(p.28)			
	Disabled when set to 0.00 or 0.0℃.			
	• Available when $E = H_{L}^{L}$ (Conductivity input High/Low limits			
	independent action) or FEMHL (Temperature input High/Low limits			
	independent action) is selected in [EVT1 type].			
	Setting range:			
	Conductivity input: Measurement range low limit to			
	Measurement range high limit (*1)			
E I_H	Temperature input: 0.0 to 100.0°C (*2) EVT1 High/Low limits independent Conductivity input:			
	upper side value	Measurement range low limit		
		Temperature input: 0.0℃		
	Sets the upper side value of EVT1 High/Low limits independent			
	action. (Fig. 7.4-1)(p.28)			
	Disabled when set to 0.00 or 0.0° C.			
	• Available when $E_{C} = H_{L}$ (Conductivity input High/Low limits			
	independent action) or $\int E^{MHL}$ (Temperature input High/Low limits			
	independent action) is selected in [EVT1 type].			
	Setting range:			
	Conductivity input: Measurement range low limit to			
	Measurement range high limit (*1)			
E I_HY	Temperature input: 0.0 to 100.0℃ (*2	•		
	_	Conductivity input : 0.01 mS/cm		
		emperature input: 1.0℃		
	Sets hysteresis of EVT1 High/Low limits independent action.			
	(Fig. 7.4-1)(p.28)			
	• Available when $\mathcal{E}_{\mathcal{L}} = \mathcal{H}_{\mathcal{L}}$ (Conductivity input High/Low limits independent action) or $\mathcal{F} \in \mathcal{H}_{\mathcal{L}}$ (Temperature input High/Low limits			
	independent action) of <i>FETTIC</i> (Temperature input High/Low limits independent action) is selected in [EVT1 type].			
	Setting range:			
	Conductivity input: 0.01 to 20% of Measurement range high limit (*1)			
	Temperature input: 0.1 to 10.0° (*2)			

(*1) The measurement unit and decimal point place follow the measurement range. (*2) The decimal point place does not follow the selection. It is fixed.

7.5 EVT2 Action Group

To enter the EVT2 Action Group, follow the procedure below.

- ① $E \not{\sqcup} \Box a z d$ Press the MODE key 4 times in Conductivity/Temperature Display Mode.
- (2) $E \lor \Gamma E^{2}F$ Press the SET key. The unit proceeds to the EVT2 Action Group, and "EVT2 type" appears.

Action, indication condition and setting range of the EVT2 Action Group are the same as those of EVT1 Action Group.

Substitute EVT1 with EVT2, and refer to the EVT1 Action Group (pp. 27 to 34).

(e.g.)
$$E \nvDash \Gamma = E \nvDash \Gamma = F$$

E 51/ 1□ → E 51/2□

7.6 EVT3 Action Group

EVT3 Action Group is indicated only when EVT3, EVT4 outputs (EVT3 option) are/is ordered.

To enter the EVT3 Action Group, follow the procedure below.

① $E \mathcal{L} \cap \mathcal{A}$ Press the MODE key 5 times in Conductivity/Temperature Display Mode.

(2) $E \vdash F$ Press the SET key.

The unit proceeds to the EVT3 Action Group, and "EVT3 type" appears.

Action, indication condition and setting range of the EVT3 Action Group are the same as those of EVT1 Action Group.

Substitute EVT1 with EVT3, and refer to the EVT1 Action Group (pp. 27 to 34).

 $\begin{array}{cccc} \text{(e.g.)} & E^{\nu}\Gamma & IF & \longrightarrow E^{\nu}\Gamma & \exists F \\ & E^{-}V^{\nu} & I & \longrightarrow E^{-}V^{\nu} & \exists & \end{array}$

7.7 EVT4 Action Group

EVT4 Action Group is indicated only when EVT3, EVT4 outputs (EVT3 option) are/is ordered.

To enter the EVT4 Action Group, follow the procedure below.

(1) $E \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L}$ Press the MODE key 6 times in Conductivity/Temperature Display Mode.

(2) $E \lor \Gamma \forall F$ Press the SET key.

The unit proceeds to the EVT4 Action Group, and "EVT4 type" appears.

Action, indication condition and setting range of the EVT4 Action Group are the same as those of EVT1 Action Group.

Substitute EVT1 with EVT4, and refer to the EVT1 Action Group (pp. 27 to 34).

(e.g.) $E \checkmark \Gamma \downarrow F \rightarrow E \checkmark \Gamma \dashv F$

E 51/ 1□ → E 51/ 4□

7.8 Basic Function Group

To enter the Basic Function Group, follow the procedure below.

- ① a.T.E.R Press the MODE key 5 times in Conductivity/Temperature Display Mode. If EVT3, EVT4 outputs (EVT3 option) are/is ordered, press the MODE key 7 times in Conductivity/Temperature Display Mode.
- ② LocK Press the SET key.

The unit enters the Basic Function Group, and the "Set value lock" will appear.

Character	Setting Item, Function, Setting Range	Factory Default	
Lock	Set value lock	Unlock	
	• Locks the set values to prevent setting		
	• (Unlock): All set values can be changed.		
	$L \Box c \not\in I$ (Lock 1): None of the set values can be changed.		
	$L \Box \Box K \overline{Z}$ (Lock 2) : Only EVT1, EVT2, EVT3, EVT4 values can be		
	changed.		
	$L \square \square K \exists$ (Lock 3) : All set values – except Sensor cell constant,		
	Measurement unit, Measurement range,		
	Conductivity Zero and Span adjustment values,		
	Temperature calibration value, Transmission		
	output 1 Zero and Span adjustment values,		
	Transmission output 2 Zero and Span adjust-		
	ment values – can be temporarily changed.		
	However, they revert to their previous value after the power is turned off because they are not		
	saved in the non-volatile IC memory.		
	Do not change setting items (EVT1, EVT2, EVT3,		
	EVT4 types). If they are changed, they will affect		
	other setting items.		
	Be sure to select Lock 3 when changing the set		
	value frequently via software communication. (If		
	the value set by the software communication is		
	the same as the value before the setting, the		
	value will not be written in the non-volatile IC		
hat t (TT)	memory.)		
	Communication protocol	Shinko protocol	
NoML	Selects communication protocol.		
	Available when the Serial communicati MoML: Shinko protocol	on (C5) option is ordered.	
	M = dR : MODBUS ASCII mode		
	MadR : MODBUS ASCII mode		
_ MN	Instrument number 0		
	• Sets the instrument number of this unit		
	should be set one by one when multiple instruments are connected,		
	otherwise communication is impossible.)		
	 Available when the Serial communication (C5) option is ordered. 		
	Setting range: 0 to 95		

Character	Setting Item, Function, Setting Range	Factory Default	
_M5P	Communication speed	9600 bps	
36	Selects a communication speed equal Available when the Serial communication		
	 Available when the Serial communication (C5) option is ordered. 9600 bps 		
	/92 : 19200 bps		
	<i>⊟∃BЧ</i> : 38400 bps		
EMEF	Data bit/Parity	7 bits/Even	
7E#N	Selects data bit and parity.		
	Available when the Serial communicati	on (C5) option is ordered.	
	• BNoN: : 8 bits/No parity		
	$\frac{7N_{\odot}N_{\odot}}{8}$: 7 bits/No parity $\frac{8EVN_{\odot}}{1}$: 8 bits/Even		
	$\frac{\partial E_{V}}{\partial N}$: 7 bits/Even		
	Badd : 8 bits/Odd		
	ੋਠਰੋਰ : 7 bits/Odd		
_M4/	Stop bit	1 bit	
	Selects the stop bit.		
	• Available when the Serial communicati	on (C5) option is ordered.	
	• / : 1 bit		
FRah I	Transmission output 1 type	Conductivity transmission	
Ec	Selects Transmission output 1 type		
	• If $\Box F F \Box \Box$ (No temperature compense	sation) is selected in	
	[Temperature compensation method (p		
	(Temperature transmission) is selected, Transmission output 1		
	value will differ depending on the selec		
	when no temperature compensation (p.41)] as follows.		
	• If $\sigma F F$ (Unlit) or $\neg f \sigma$ (Reference temperature) is		
	selected, the value set in [Reference temperature (p.25)] will be output.		
		ected, the measured value will	
	 If P¹_ν (Measured value) is selected, the measured value will be output. 		
	• E = Conductivity transmission		
	TEMP Temperature transmission		
	Mir I EVT1 MV transmission (*1)		
	MICE EVT2 MV transmission		
	MV = EVT3 MV transmission (*2)		
	EVT4 MV transmission (*2)		

(*1) Not available when Transmission output 2 (TA2 option) is ordered.

(*2) Available when EVT3, EVT4 outputs (EVT3 option) are/is ordered.

Character	Setting Item, Function, Setting	Range	Factory Default
FRLHI	Transmission output 1 high limit	Conductivi	ty transmission:
2000	······································	Measure	ement range high limit
			re transmission: 100.0℃ hission: 100.0%
	Sets Transmission output 1 high lim		
	20 mA DC output.). If Transmission		
	set to the same value, Transmissio	on output 1	will be fixed at 4 mA DC.
	Setting range:	·	
	Conductivity transmission: Transm		
			e high limit (*1)
	Temperature transmission: Transmis		
	MV transmission: Transmission out		ty transmission:
FRLL I	Transmission output 1 low limit		ement range low limit
000			re transmission: 0.0°C
			nission: 0.0%
	 Sets Transmission output 1 low limi 		
	4 mA DC output.). If Transmission of		
	set to the same value, Transmissic • Setting Range:	on output 1 \	will be fixed at 4 mA DC.
	Conductivity transmission: Measure	ment range	low limit to
			1 high limit (*1)
	Temperature transmission: 0.0°C to		
	MV transmission: 0.0% to Transmis		
FRoh2	Transmission output 2 type	Temperatu	re transmission
ГЕМР	Selects Transmission output 2 typ		
	If <i>aFF</i> (No temperature com	pensation) i	s selected in
	[Temperature compensation metho		
	(Temperature transmission) is sele		
	value will differ depending on the s when no temperature compensation		
	・If ロチチニー(Unlit) or ケーゴー(F		
	the value set in [Reference temp		
	• If Prime (Measured value) is	s selected, t	he measured value will
	be output.		
	• $\xi \in \Box \subseteq \Box$: Conductivity transmission		
	<i>FEMP</i> : Temperature transmiss	on	
	EVT2 MV transmission		
	Mビヨニニ: EVT3 MV transmission (*3) Mビビニ: EVT4 MV transmission (*3)		
FRLH2	Transmission output 2 high limit		ty transmission:
000	······································		ement range high limit
			re transmission: 100.0°C
	Coto Troponsionion output O high line		hission: 100.0%
	 Sets Transmission output 2 high lim 20 mA DC output.). If Transmission 		
	set to the same value, Transmission		
	• Setting range:		
	Conductivity transmission: Transmi		
			e high limit (*1)
	Temperature transmission: Transmis		
(*1) The massi	MV transmission: Transmission out rement unit and decimal point place follow		
(*2) The decima	al point place does not follow the selection.	It is fixed.	ient range.
(*3) Available w	hen EVT3, EVT4 outputs (EVT3 option) are	e/is ordered.	
	38		

Character	Setting Item, Function, Setting	Range	Factory Default
TRLLZ	Transmission output 2 low limit	Conductivit	y transmission:
00	•		ment range low limit
			re transmission: 0.0℃ ission: 0.0%
	Sets Transmission output 2 low limit		
	4 mA DC output.). If Transmission of		
	set to the same value, Transmissio		
	Setting Range:	·	
	Conductivity transmission: Measure		
			2 high limit (*1)
	Temperature transmission: 0.0°C to		
FRES 1	MV transmission: 0.0% to Transmis Transmission output 1 status	Last value	
_	when calibrating	Last value	HOLD
bEFH⊡	Selects Transmission output 1 stat	us when cal	ibrating conductivity
	• <i>EEFH</i> : Last value HOLD (Reta		
	conductivity calibration,		
	ー ニー ー ー ー Set value HOLD (Output		
	output 1 value HOLD wh		
	PL'H : Measured value (Output	s the measu	ired value when
	calibrating conductivity.)		
FRHE I	Transmission output 1 value		ty transmission: ment range low limit
000	HOLD when calibrating		re transmission: 0.0℃
			ission: 0.0%
	Sets Transmission output 1 value		
	• Available only when $\neg \varXi H \square$ (See		
	[Transmission output 1 status whe	n calibrating].
	• Setting range:		
	Conductivity transmission: Measurement range low limit to high limit (*1)		
	Temperature transmission: 0.0 to 1 MV transmission: 0.0 to 100.0%	00.0 C ("2)	
FRES2	Transmission output 2 status	Last value	
5EFH	when calibrating	Last value	HOLD
	Selects Transmission output 2 stat	us when cal	ibrating conductivity.
	● <i>与EFH</i> □: Last value HOLD (Reta		
	conductivity calibration, a		
	ー <i>っE「H</i> 匚: Set value HOLD (Output		
	output 2 value HOLD wh		
	$P_{\nu} H$ Beasured value (Outputs the measured value when		
	calibrating conductivity.)	Caradurativit	
FR4E2	Transmission output 2 value		ty transmission: ment range low limit
<i>ao</i>	HOLD when calibrating		re transmission: 0.0℃
			ission: 0.0%
	Sets Transmission output 2 value HOLD.		
	• Available only when $\neg E \Gamma H \square$ (Set value HOLD) is selected in		
	[Transmission output 2 status when calibrating].		
	• Setting range		
	Conductivity transmission: Measurement range low limit to high limit (*1) Temperature transmission: 0.0 to 100.0°C (*2)		
	MV transmission: 0.0 to 100.0%		
(*1) The measu	rement unit and decimal point place follow t	the measurem	ent range.
(*2) The decima	al point place does not follow the selection.	It is fixed.	-

Character	Setting Item, Function, Setting Range	Factory Default
ыкцг□	Backlight selection	All are backlit
RLL	Selects the display to backlight.	
	• BLL All are backlit.	
	E = : Conductivity Display is bac	klit.
	If EMP : Temperature Display is bac Bc : Action indicators are backli	
	$E = \Gamma M P$: Conductivity Display + Tem	
	$\mathcal{E}_{\mathcal{C}} \mathcal{R}_{\mathcal{C}} = :$ Conductivity Display + Action	on indicators are backlit.
	「MP用」: Temperature Display + Acti	
colR[]	Conductivity color	Red
REd	Selects a color for the Conductivity Dis	play.
	• <i>GRN</i> : Green <i>REd</i> : Red	
	$E = G R^{\Box}$: Conductivity color changes	continuously (Fig. 7 8-1)
	The Conductivity Display c	
	[Conductivity color reference	•
	color range] settings.	
	 When conductivity is lowe 	
	reference value] – [Conductivity color range]: Orange	
	When conductivity is within [Conductivity color reference walked to [Conductivity color repeated Crean	
	value] ± [Conductivity color range]: Green • When conductivity is higher than [Conductivity color	
	reference value] + [Conductivity color range]: Red	
	Orange Green Red	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		Conductivity color reference value
	Hys	: Conductivity color range
	(Fig. 7.8-1))
cLP	Conductivity color reference value	50% of Measurement range
000		high limit
	• Sets a reference value for conductivity	
	$\mathcal{E} = \mathcal{I} \mathcal{R}$ (Conductivity color changes of in [Conductivity color].	continuously) is selected
	Setting range: 0.00 to Measurement ra	nge high limit (*)
el RG	Conductivity color range	0.10 mS/cm
0.10	• Sets a range for Conductivity color to be o	
	(Conductivity color changes continuously)	
	color].	
	Setting range: 0.10 to Measurement ra	nge high limit (*)

(*) The measurement unit and decimal point place follow the measurement range.

Character	Setting Item, Function, Setting Range	Factory Default
dPF M	Backlight time 0 minutes	
	 Sets time to backlight from no operation status until backlight is switched off. When set to 0, the backlight remains ON. Backlight relights by pressing any key while backlight is OFF. Setting range: 0 to 99 minutes 	
6684L EEEEE	Bar graph indication No indication • Selects bar graph indication. • •	
	When output is 50%	
	-5% 50%	105%
	Lights from left to the right in accor (Fig. 7.8-2)	dance with the output.
I NERR	EVT output when input errors occur	Disabled
<i>∞FF</i> ⊡	 If input errors occur, such as conductivity sensor is burnt out or short-circuited, EVT output Enabled/Disabled can be selected. If "Enabled" is selected, EVT output will be maintained when input errors occur. If "Disabled" is selected, EVT output will be turned OFF when input errors occur. Available when <i>E</i> = <i>L</i> (Conductivity input low limit action), <i>E</i> = <i>H</i> (Conductivity input high limit action), <i>I</i> = <i>MPL</i> (Temperature input low limit action), or <i>I</i> = <i>MPL</i> (Temperature input low limit action), or <i>I</i> = <i>MPL</i> (Temperature input low limit action) is selected in [EVT□ type]. <i>DFF</i>□ : Disabled 	
oFdP	Temperature Display when no	Unlit
₀FF	 temperature compensation Selects an item to be indicated on the Temp □FF (No temperature compensation) is compensation method (p.25)]. Available when □FF (No temperature selected in [Temperature compensation method □FF (Selected in [Temperature compensation method in [Temperature	s selected in [Temperature compensation) is hod (p.25)].
M_ 4 4E =	Conductivity input error alarm time unit • Selects conductivity input error alarm time unit • Selection item: ウをここ: Second(s) パル いこ: Minute(s)	Second(s) unit.

8. Calibration

Conductivity and Temperature Calibration modes, Transmission output 1 and 2 adjustment modes are described below.

8.1 Conductivity Calibration Mode

Deterioration of the 4-electrode Conductivity Sensor might cause the cell constant to change. To correct the changed cell constant, calibration is required. Calibrate Conductivity Zero adjustment first, followed by Conductivity Span adjustment. However, if $L \square \square I \subseteq I \subseteq I$ (Lock 1), $L \square \square I \subseteq I \subseteq I$ (Lock 2) or $L \square \square I \subseteq I \subseteq I$ (Lock 3) is selected in [Set value lock (p.36)], the unit cannot move to Conductivity Calibration mode.

The following outlines the procedure for conductivity calibration.

- ① When selecting *bEFH*□ (Last value HOLD) in [Transmission output 1 status when calibrating (p.39)] or in [Transmission output 2 status when calibrating (p.39)], select it while the 4-electrode Conductivity Sensor is being immersed in the solution currently calibrated.
- ⁽²⁾ At this stage, do not immerse the 4-elctrode Conductivity Sensor in the standard solution.
- ^③ Press and hold the ∇ key and ^{MODE} key (in that order) together for 3 seconds in Conductivity/Temperature Display Mode.

The unit enters [Conductivity calibration Zero adjustment mode], and indicates the following.

Display	Indication
Conductivity Display	$R \exists \Box Z \Box$ and conductivity are indicated alternately.
Temperature Display	Conductivity Zero adjustment value

④ Set the Conductivity Zero adjustment value with the △ or ▽ key so that conductivity becomes 0 (zero).

If conductivity is 0 (zero), this adjustment is not necessary.

The setting range of Conductivity Zero adjustment value differs depending on the measurement range. (Table 8.1-1) (p.43)

However, it is only effective within the measurement range regardless of conductivity Zero adjustment value.

⁵ Press the SET key.

Conductivity Zero adjustment value will be registered, and the unit enters [Conductivity calibration Span adjustment mode], and indicates the following.

Display	Indication
Conductivity Display	$P = L' = \Box$ and conductivity are indicated alternately.
Temperature Display	Conductivity Span adjustment value

⁶ Immerse the 4-electrode Conductivity Sensor in the standard solution.

(Table 8.1-1)

(Table 8.1-1) Mea	asurement Range	Conductivity Zero Adjustment Value Setting Range
	0.00 to 20.00 mS/cm	-2.00 to 2.00
	0.0 to 200.0 mS/cm	-20.0 to 20.0
	0.0 to 500.0 mS/cm	-50.0 to 50.0
	0 to 500 mS/cm	-50 to 50
	0.000 to 2.000 mS/cm	-0.200 to 0.200
	0.000 to 5.000 mS/cm	-0.500 to 0.500
	0.00 to 50.00 mS/cm	-5.00 to 5.00
	0 to 2000 <i>µ</i> S/cm	-200 to 200
	0 to 5000 µS/cm	-500 to 500
0	0.000 to 2.000 S/m	-0.200 to 0.200
Cell	0.00 to 20.00 S/m	-2.00 to 2.00
constant	0.00 to 50.00 S/m	-5.00 to 5.00
1.0/cm	0.0 to 50.0 S/m	-5.0 to 5.0
	0 to 2000 mS/m	-200 to 200
	0.000 to 5.000 S/m	-0.500 to 0.500
	0.0 to 200.0 mS/m	-20.0 to 20.0
	0.0 to 500.0 mS/m	-50.0 to 50.0
	0.0 to 20.0 g/L	-2.0 to 2.0
	0 to 200 g/L	-20 to 20
	0 to 500 g/L	-50 to 50
	0 to 2000 mg/L	-200 to 200
	0 to 5000 mg/L	-500 to 500
	0.0 to 200.0 mS/cm	-20.0 to 20.0
	0.0 to 500.0 mS/cm	-50.0 to 50.0
	0 to 2000 mS/cm	-200 to 200
Cell	0.00 to 20.00 S/m	-2.00 to 2.00
constant	0.00 to 50.00 S/m	-5.00 to 5.00
10.0/cm	0.0 to 200.0 S/m	-20.0 to 20.0
	0 to 200 g/L	-20 to 20
	0 to 500 g/L	-50 to 50
	0 to 2000 g/L	-200 to 200
Seawater s	alinity 0.00 to 4.00%	-0.40 to 0.40
NaCl salinit	y 0.00 to 20.00%	-2.00 to 2.00

- ⑦ Set the Conductivity Span adjustment value with the △ or ▽ key while checking the conductivity.
 Conductivity Span adjustment value: 0.700 to 1.300
- 8 Press the SET key.

Conductivity Span adjustment value will be registered, and the unit reverts to Conductivity/Temperature Display Mode.

8.2 Temperature Calibration Mode

To calibrate a temperature, set a temperature calibration value.

If $\Box F F$ (No temperature compensation) is selected in [Temperature compensation method (p.25)], and if $\Box F F$ (Unlit) or $\neg f \Box$ (Reference temperature) is selected in [Temperature Display when no temperature compensation (p.41)], Temperature Calibration mode is not available.

When a sensor cannot be set at the exact location where measurement is desired, the resulting measured temperature may deviate from the temperature in the desired location. In this case, the desired temperature can be set for the desired location by setting a temperature calibration value. However, it is only effective within the input rated range regardless of the temperature calibration value.

Temperature after calibration = Current temperature + (Temperature calibration value) (e.g.) When current temperature is 23.5° C,

If temperature calibration value is set to 1.5° C: $23.5 + (1.5) = 25.0^{\circ}$ C If temperature calibration value is set to -1.5° C: $23.5 + (-1.5) = 22.0^{\circ}$ C

The following outlines the procedure for Temperature calibration.

⁽¹⁾ Press and hold the △ key and ^{MODE} key (in that order) together for 3 seconds in Conductivity/Temperature Display Mode.

The unit will proceed to Temperature Calibration mode, and indicates the following.

Display	Indication
Conductivity Display	ha and temperature are indicated alternately.
Temperature Display	Temperature calibration value

⁽²⁾ Set a temperature calibration value with the \triangle or ∇ key, while checking the temperature.

Setting range: -10.0 to 10.0°C

³ Press the SET key.

Temperature calibration is complete, and the unit reverts to Conductivity/ Temperature Display Mode.

8.3 Transmission Output 1 Adjustment Mode

Fine adjustment of Transmission output 1 is performed.

The AER-102-ECH is adjusted at the factory, however, differences may occur between the indication value of the connected equipment (recorders, etc.) and output value of this instrument.

In this case, perform Transmission output 1 Zero adjustment and Span adjustments.

The unit cannot enter Transmission output 1 Zero adjustment mode in the following cases:

- During Conductivity Calibration mode or Temperature Calibration mode
- When $L \square \square H H H$ (Lock 1), $L \square \square H H H$ (Lock 2) or $L \square \square H H H$ (Lock 3) is selected in [Set value lock (p.36)]

The following outlines the procedure for Transmission output 1 adjustment.

① Press and hold the △ key and SET key (in that order) together for 3 seconds in Conductivity/Temperature Display Mode.

The unit enters Transmission output 1 Zero adjustment mode, and indicates the following.

Display	Indication
Conductivity Display	RJZ I
Temperature Display	Transmission output 1 Zero adjustment value

- ② Set a Transmission output 1 Zero adjustment value with the △ or ▽ key, while viewing the value indicated on the connected equipment (recorders, etc.). Setting range: ±5.00% of Transmission output 1 span
- (3) Press the SET key.

The unit enters Transmission output 1 Span adjustment mode, and indicates the following.

Display	Indication
Conductivity Display	RJ5 1
Temperature Display	Transmission output 1 Span adjustment value

- ④ Set a Transmission output 1 Span adjustment value with the △ or ▽ key, while viewing the value indicated on the connected equipment (recorders, etc.). Setting range: ±5.00% of Transmission output 1 span
- ⁽⁵⁾ Press the ^{MODE} key.

The unit reverts to Transmission output 1 Zero adjustment mode. Repeat steps (2) to (5) if necessary.

⁽⁶⁾ To finish Transmission output 1 adjustment, press the SET key in Transmission output 1 Span adjustment mode. The unit reverts to Conductivity/Temperature Display Mode.

8.4 Transmission Output 2 Adjustment Mode

Fine adjustment of Transmission output 2 is performed.

The AER-102-ECH is adjusted at the factory, however, differences may occur between the indication value of the connected equipment (recorders, etc.) and output value of this instrument.

In this case, perform Transmission output 2 Zero adjustment and Span adjustments.

The unit cannot enter Transmission output 2 Zero adjustment mode in the following cases:

- During Conductivity Calibration mode or Temperature Calibration mode

The following outlines the procedure for Transmission output 2 adjustment.

The unit enters Transmission output 2 Zero adjustment mode, and indicates the following.

Display	Indication
Conductivity Display	RJZZ
Temperature Display	Transmission output 2 Zero adjustment value

(2) Set a Transmission output 2 Zero adjustment value with the △ or ▽ key, while viewing the value indicated on the connected equipment (recorders, etc.). Setting range: ±5.00% of Transmission output 2 span

(3) Press the SET key.

The unit enters Transmission output 2 Span adjustment mode, and indicates the following.

Display	Indication
Conductivity Display	R_152
Temperature Display	Transmission output 2 Span adjustment value

- ④ Set a Transmission output 2 Span adjustment value with the △ or ▽ key, while viewing the value indicated on the connected equipment (recorders, etc.). Setting range: ±5.00% of Transmission output 2 span
- ⁽⁵⁾ Press the ^{MODE} key.

The unit reverts to Transmission output 2 Zero adjustment mode. Repeat steps (2) to (5) if necessary.

(6) To finish Transmission output 2 adjustment, press the SET key in Transmission output 2 Span adjustment mode. The unit reverts to Conductivity/Temperature Display Mode.

9. Measurement

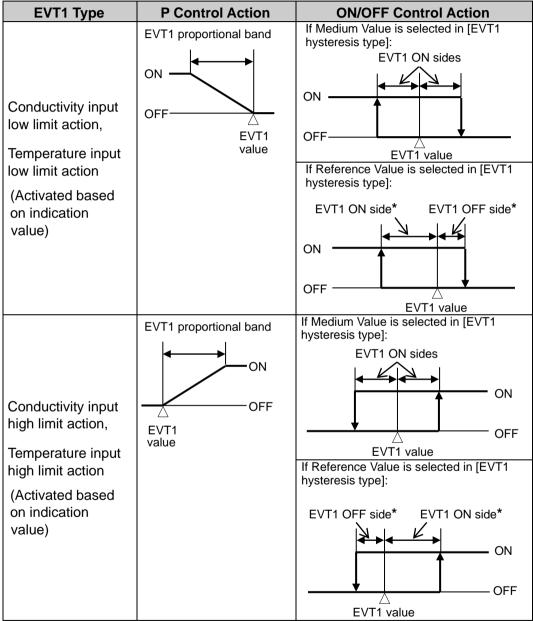
9.1 Starting Measurement

After mounting to the control panel, wiring, setup and calibration are complete, turn the power to the instrument ON.

For approx. 4 seconds after the power is switched ON, the following characters are indicated on the Conductivity Display and Temperature Display.

Display	Character	Measurement Unit		
	coN/	Conductivity (mS/cm, μ S/cm)		
	<u>-</u> ;	Conductivity (S/m, mS/m)		
Conductivity Display	4 <i>ER</i>	Seawater salinity (%)		
Display		NaCl salinity (%)		
	Гd'-	TDS conversion (g/L, mg/L)		
Display	Character	Input Temperature Specification (*)	Selection Item in [Pt100 Input Wire Type] (p.26)	
Temperature	PF2 PF3	Pt100	ELI RE: 2-wire type ELI RE: 3-wire type	
Display	PF 10	Pt1000		

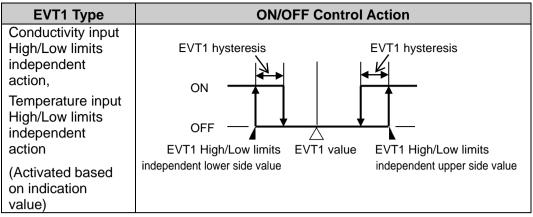
(*) This input temperature specification was specified at the time of ordering.


During this time, all outputs are in OFF status, and action indicators are turned off. After that, measurement starts, indicating the item selected in [Backlight Selection (p.40)].

9.2 EVT1 to EVT4 Outputs

If $\mathcal{E}_{\mathcal{L}} = \mathcal{L}$ (Conductivity input low limit action), $\mathcal{E}_{\mathcal{L}} = \mathcal{H}$ (Conductivity input high limit action), $\mathcal{F} = \mathcal{H} \mathcal{P} \mathcal{L}$ (Temperature input low limit action) or $\mathcal{F} = \mathcal{H} \mathcal{P} \mathcal{H}$ (Temperature input high limit action) is selected in [EVT1 type (p.27)], the following action is activated.

The same applies to EVT2, EVT3 and EVT4.


EVT1 Action

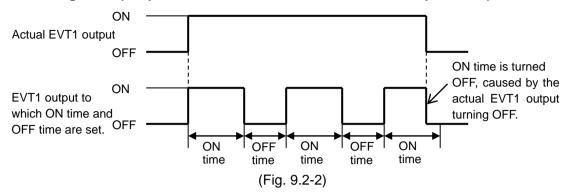
* Setting Example:

If [EVT1 ON side $(\mathcal{E} \mid \mathcal{A} \not\subseteq \mathcal{A})$] is set to 0.00 or 0.0, EVT1 output can be turned ON at the value set in [EVT1 value $(\mathcal{E} \neg \mathcal{L} \mid \mathcal{A})$].

If [EVT1 OFF side $(\pounds \ | d \not \vdash U)$] is set to 0.00 or 0.0, EVT1 output can be turned OFF at the value set in [EVT1 value $(\xi \not \vdash U)$].

P Control Action

Within the proportional band, the manipulated variable is output in proportion to the deviation between the EVT1 value and measured value.


EVT1 Type	Description
Conductivity input low limit action, Temperature input low limit action	If measured value is lower than [EVT1 value – EVT1 proportional band], EVT1 output is turned ON. If measured value enters within the proportional band, EVT1 output is turned ON/OFF in EVT1 proportional cycles. If measured value exceeds the EVT1 value, EVT1 output is turned OFF.
Conductivity input high limit action, Temperature input high limit action	If measured value is higher than [EVT1 value + EVT1 proportional band], EVT1 output is turned ON. If measured value enters within the proportional band, EVT1 output is turned ON/OFF in EVT1 proportional cycles. If measured value drops below the EVT1 value, EVT1 output is turned OFF.

ON/OFF Control Action

EVT1 Type	Description
Conductivity input	If measured value is lower than EVT1 value, EVT1 output is
low limit action,	turned ON.
Temperature input	If measured value exceeds the EVT1 value, EVT1 output is
low limit action	turned OFF.
Conductivity input	If measured value is higher than EVT1 value, EVT1 output is
high limit action,	turned ON.
Temperature input	If measured value drops below the EVT1 value, EVT1 output
high limit action	is turned OFF.

If ON time and OFF time are set in [Output ON time/OFF time when EVT1 output ON (p.31)], EVT1 output can be turned ON/OFF in a configured cycle when EVT1 output is ON.

Timing chart (Output ON time and OFF time when EVT1 output is ON)

EVT output status can be read by reading Status flag 2 (EVT1, EVT2, EVT3, EVT4 output flag bit) in Serial communication (C5 option).

EVT output status, when input errors occur, differs depending on the selection in [EVT output when input errors occur (p.41)].

• If $\Box \vdash \vdash \Box$ (Disabled) is selected, EVT output will be turned OFF when input errors occur.

• If an (Enabled) is selected, EVT output will be maintained when input errors occur.

9.3 Error Output

If $\mathcal{ER}_{\mathcal{D}}\mathcal{U}\mathcal{U}$ (Error output) is selected in [EVT1 type (p.27)], and when the error type is "Error" in (Table 9.5-1), the EVT1 output is turned ON. The same applies to EVT2, EVT3 and EVT4.

9.4 Fail Output

If FR! L (Fail output) is selected in [EVT1 type (p.27)], and when the error type is "Fail" in (Table 9.5-1), the EVT1 output is turned ON. The same applies to EVT2, EVT3 and EVT4.

9.5 Conductivity Input Error Alarm

Conductivity input error alarm is used for detecting actuator trouble.

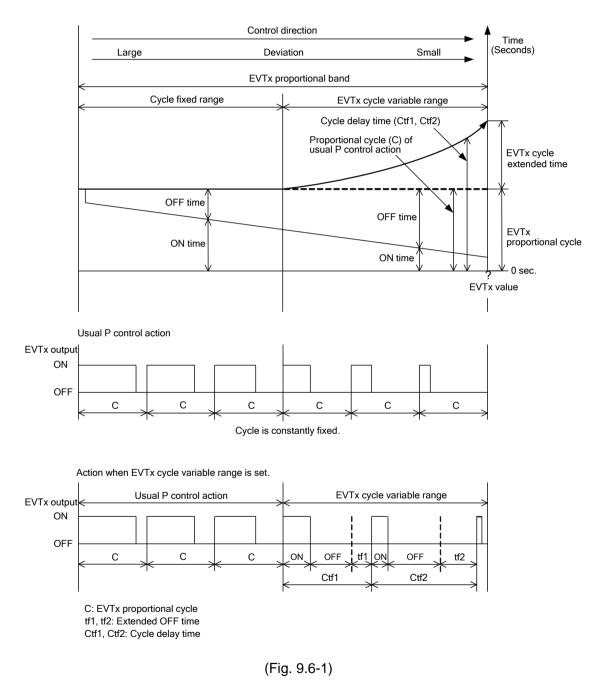
Even if conductivity input error alarm time has elapsed, and if conductivity input does not become higher than conductivity input error alarm band, the unit assumes that actuator trouble has occurred, and sets Status flag 2 (EVT1, EVT2, EVT3, EVT4 output flag bit).

In Serial communication, status can be read by reading Status flag 2 (EVT1, EVT2, EVT3, EVT4 output flag bit).

If EEUL (Conductivity input error alarm output) is selected in [EVT1 type (p.27)], the EVT1 output is turned ON.

The same applies to EVT2, EVT3 and EVT4.

Conductivity input error alarm is disabled in the following cases.


- During conductivity calibration
- When Conductivity input error alarm time is set to 0 (zero) seconds or minutes, or Conductivity input error alarm band is set to 0.00.

9.6 Cycle Automatic Variable Function

If deviation between EVT value and measured value enters EVT cycle variable range, the proportional cycle will be automatically extended in accordance with the deviation.

Proportional action OFF time will be extended, and ON/OFF ratio will be adjusted.

However, if EVT \Box cycle extended time is set to 0 (zero) seconds, this function will be disabled.

9.7 Error Code during Measurement

For temperature sensor error or outside temperature compensation range during measurement, their corresponding error codes flash on the Temperature Display as shown below in (Table 9.7-1).

Error Code	Error Type	Error Contents	Description
ERRO I	Fail	Temperature sensor	Temperature sensor lead wire
		burnout	is burnt out.
ERROZ	Fail	Temperature sensor	Temperature sensor lead wire
		short-circuited	is short-circuited.
ERRO3	Error	Outside temperature	Measured temperature has
		compensation range	exceeded 110.0℃.
ERROY	Error	Outside temperature	Measured temperature is
		compensation range	less than 0.0℃.

(Table 9.7-1)

9.8 Setting EVT1 to EVT4 Values

EVT1 to EVT4 values can be set in Simple Setting mode.

These setting items are the same as those in EVT1 to EVT4 Action Groups.

To enter Simple Setting mode, follow the procedure below.

(1) $\xi \vdash \iota' \downarrow$ Press the SET key in Conductivity/Temperature Display Mode. "EVT1 value" will be indicated.

⁽²⁾ Set each setting item using the \triangle or ∇ key, and register the value with the ^{SET} key.

Character	Setting Item, Function, Setting Range	Factory Default		
E5# 10	EVT1 value	Conductivity input:		
000		Measurement range low limit		
		Temperature input: 0.0℃		
	Sets EVT1 value.			
	• Not available if (No action),	ERaLIF (Error output),		
	$FRIL \square$ (Fail output) or $EEUL \square$ (Co	onductivity input error alarm		
	output) is selected in [EVT1 type (p.27)).		
	Not available if Transmission output 2 (1	TA2 option) is ordered.		
	Conductivity input: Measurement range low limit to			
	Measurement range high limit (*1)			
	Temperature input: 0.0 to 100.0℃ (*2)			
E 4# 2	EVT2 value	Conductivity input:		
000		Measurement range low limit		
		Temperature input: 0.0℃		
	Sets EVT2 value.			
	• Not available if \Box \Box \Box \Box \Box \Box \Box (No action), $\mathcal{ER} \mathcal{A} \mathcal{U} \mathcal{I}$ (Error output),			
	FBLL (Fail output) or $EELL$ (Conductivity input error alarm			
	output) is selected in [EVT2 type (p.27)].			
	Conductivity input: Measurement range low limit to			
	Measurement range high limit (*1)			
	Temperature input: 0.0 to 100.0℃ (*2)			

(*1) The measurement unit and decimal point place follow the measurement range.

(*2) The decimal point place does not follow the selection. It is fixed.

<i>E 与 ド ヨ</i> ニ EVT3	ing Item, Function, Setting Range value	Factory Default		
	value			
		Conductivity input:		
000		Measurement range low limit		
		Temperature input: 0.0°C		
	EVT3 value.			
Not	available if (No action),	<i>ERa님</i> (Error output),		
	L□ (Fail output) or ÈELL□ (Co			
outp	ut) is selected in [EVT3 type (p.27)].		
	able only when EVT3, EVT4 output	· /		
• Cond	 Conductivity input: Measurement range low limit to 			
	Measurement range high limit (*1)			
Temp	Temperature input: 0.0 to 100.0°C (*2)			
<i>E 5 ⊬ 4</i> EVT 4	value	Conductivity input:		
		Measurement range low limit		
		Temperature input: 0.0℃		
Sets	EVT4 value.	· · ·		
Not	available if (No action),	\mathcal{ERa} (Error output).		
	FBI L (Fail output) or $EELIL$ (Conductivity input error alarm			
	output) is selected in [EVT4 type (p.27)].			
• Avai	• Available only when EVT3, EVT4 outputs (EVT3 option) are/is ordered.			
• Cond	Conductivity input: Measurement range low limit to			
	Measurement range high limit (*1)			
Temp	perature input: 0.0 to 100.0℃ (*2)			

(*1) The measurement unit and decimal point place follow the measurement range.

(*2) The decimal point place does not follow the selection. It is fixed.

③ Press the SET key. The unit reverts to Conductivity/Temperature Display Mode.

9.9 Transmission Output 1 and 2

Converting conductivity, temperature or MV to analog signal every input sampling period, outputs in current.

If $\Box \not \vdash \not \vdash \Box$ (No temperature compensation) is selected in [Temperature compensation method (p.25)], and if $\not \vdash \not \vdash \not \vdash \not \vdash \Box$ (Temperature transmission) is selected in [Transmission output 1 type (p.37)] or in [Transmission output 2 type (p.38)], Transmission output 1 or 2 value differs depending on the selection in [Temperature Display when no temperature compensation (p.41)].

- If ロFFIII (Unlit) or 「」「ゴロロ」 (Reference temperature) is selected, the value set in [Reference temperature (p.25)] will be output.
- If P_{i} (Measured value) is selected, the measured value will be output.

If Transmission output 1 high limit and low limit are set to the same value, Transmission output 1 will be fixed at 4 mA DC.

If Transmission output 2 high limit and low limit are set to the same value,

Transmission output 2 will be fixed at 4 mA DC.

Resolution	12000	
Current	4 to 20 mA DC (Load resistance: Max. 550 Ω)	
Output accuracy	Within ±0.3% of Transmission output 1 or 2 span	

10. Specifications

10.1 Standard Specifications

Rating

Rated Scale		Input		Input Range	Resolution
				0.00 to 20.00 mS/cm	0.01 mS/cm
				0.0 to 200.0 mS/cm	0.1 mS/cm
				0.0 to 500.0 mS/cm	0.1 mS/cm
				0 to 500 mS/cm	1 mS/cm
				0.000 to 2.000 mS/cm	0.001 mS/cm
				0.000 to 5.000 mS/cm	0.001 mS/cm
				0.00 to 50.00 mS/cm	0.01 mS/cm
				0 to 2000 µS/cm	1 μ S/cm
				0 to 5000 μ S/cm	1 μ S/cm
				0.000 to 2.000 S/m	0.001 S/m
			Cell	0.00 to 20.00 S/m	0.01 S/m
			constant 1.0/cm	0.00 to 50.00 S/m	0.01 S/m
			1.0/011	0.0 to 50.0 S/m	0.1 S/m
		iť		0 to 2000 mS//m	1 mS/m
	ity	cti		0.000 to 5.000 S/m	0.001 S/m
	Conductivity	Conductivity		0.0 to 200.0 mS/m	0.1 mS/m
	npu	Con		0.0 to 500.0 mS/m	0.1 mS/m
	Con	0		0.0 to 20.0 g/L	0.1 g/L
	0			0 to 200 g/L	1 g/L
				0 to 500 g/L	1 g/L
				0 to 2000 mg/L	1 mg/L
				0 to 5000 mg/L	1 mg/L
				0.0 to 200.0 mS/cm	0.1 mS/cm
				0.0 to 500.0 mS/cm	0.1 mS/cm
				0 to 2000 mS/cm	1 mS/cm
			Cell	0.00 to 20.00 S/m	0.01 S/m
			constant	0.00 to 50.00 S/m	0.01 S/m
			10.0/cm	0.0 to 200.0 S/m	0.1 S/m
		Seawate		0 to 200 g/L	1 g/L
				0 to 500 g/L	1 g/L
				0 to 2000 g/L	1 g/L
			er salinity	0.00 to 4.00%	0.01%
	1	NaCl sal	inity	0.00 to 20.00%	0.01%
	Temper-	Pt100		0.0 to 100.0℃	0.1℃
	ature (*)	Pt1000		0.0 to 100.0℃	0.1℃
	(*) For the temperature indication, decimal point place can be selected.				

Input	4-electrode Conductivity Sensor (Temperature element Pt100)		
	4-electrode Conduct	ivity Sensor (Temperatur	e element Pt1000)
Power Supply	Model AER-102-ECH AER-102-ECH 1		
Voltage	Power supply 100 to 240 V AC 24 V AC/DC		
	voltage 50/60 Hz 50/60 Hz		
	Allowable voltage 85 to 264 V AC 20 to 28 V AC/DC		20 to 28 V AC/DC
	fluctuation range		

General Structure

External Dimensions	48 x 96 x 98.5 mm (W x H x D)		
Mounting	Flush (Applicable panel thickness: 1 to 8 mm)		
Case	Material: Flame-	resistant resin, Color: Black	
Front Panel	Membrane sheet		
Drip-proof/Dust-proof	IP66 (for front pa	inel only)	
Indication Structure	Displays		
	Conductivity Display11-segment LCD display 5-digits Backlight: Red/Green/Orange Character size: 14.0 x 5.4 mm (H x W)		
	Temperature Display11-segment LCD display 5-digits Backlight: Green Character size: 10.0 x 4.6 mm (H x W)		
	Output Display 22-segment LCD display Bar graph Backlight: Green		
	Action indicators: Backlight: Orange color		
	EVT1	EVT1 output (Contact output 1) ON: Lit	
	EVT2	EVT2 output (Contact output 2) ON: Lit	
	EVT3 EVT3 output (Contact output 3) ON: Lit		
	EVT4 EVT4 output (Contact output 4) ON: Lit		
	T/R During Serial communication TX output		
	(transmitting): Lit		
	LOCK When Lock 1, 2 or 3 is selected: Lit		
Setting Structure	Input system using membrane sheet key		

Indication Performance

Repeatability	Conductivity:	±0.5% of measurement span	
	Salinity conversion:	±1% of measurement span	
	TDS conversion:	±1.5% of measurement span	
Linearity	Conductivity:	±0.5% of measurement span	
	Salinity conversion:	±1% of measurement span	
	TDS conversion:	±1.5% of measurement span	
Indication Accuracy	Temperature: ±1℃		
Input Sampling Period	250 ms (2 inputs)		
Time Accuracy	Within ±1% of setting time		

Standard Functions

Standard Functions				
Conductivity Calibration	Calibrate Conductivity Zero adjustment first, followed by Conductivity Span adjustment.			
	If Lack I (Lock 1), Lack2 (Lock 2) or Lack3			
	(Lock 3) is selected in [Set value lock (p.36)], the unit can			
	not proceed to Conductivity Calibration mode.			
	In Conductivity Zero adjustment, adjustment is performed			
	so that conductivity becomes 0 (zero), without immersing			
	the 4-electrode Conductivity Sensor in the standard			
	solution.			
			an adjustment, the 4-electrode	
			or is immersed in the standard solution,	
	-		performed, while checking conductivity.	
		-	effective within the measurement range	
T			djusted value. Annot be set at the exact location where	
Temperature	measurement		desired, the resulting measured	
Calibration			deviate from the temperature in the	
			this case, the desired temperature can be	
	set for the des	ired lo	ocation by setting a temperature calibration	
			is only effective within the input rated	
			f the temperature calibration value.	
Transmission Output	•		ctivity, temperature or MV to analog signal	
1			g period, and outputs the value in current.	
			mperature compensation) is selected in	
		re compensation method (p.25)], and if		
	$\Gamma \in MP$ (Temperature transmission) is selected in			
	[Transmission output 1 type (p.37)], Transmission output 1 value will differ depending on the selection in [Temperature			
	Display when no temperature compensation (p.41)] as			
	follows.	no te	inperature compensation (p.41)] as	
		•	nlit) or ケーゴ (Reference temperature)	
			value set in [Reference temperature	
	(p.25)] will			
			easured value) is selected, the measured	
	value will I		put 1 high limit and low limit are set to the	
			mission output 1 will be fixed at 4 mA DC.	
	Resolution	1200	•	
	Current	4 to	20 mA DC(Load resistance: Max. 550 Ω)	
	Output accuracy		in $\pm 0.3\%$ of Transmission output 1 span	
Transmission			the Transmission output 1 is performed	
Output 1 Adjustment	TransmissionSelects TransmissioOutput 1 StatusLast value HOLDwhen Calibrating		utput 1 Zero and Span adjustments.	
			n output 1 status when calibrating conductivity.	
			Retains the last value before	
when Calibrating			conductivity calibration, and outputs it.	
Set value HOLD		LD	Outputs the value set in [Transmission	
	Measured val	IIE	output 1 value HOLD when calibrating (p.39)]. Outputs the measured value when	
		uc	calibrating conductivity.	
	I		gkji	

TDS Conversion	TDS stands for Total Dissolved Solids. Conductivity of a solution results from the amount of salt, minerals or dissolved gas. Conductivity is an index indicating total amount of substance in a solution, and TDS indicates only the amount of all dissolved solid substances. TDS can be used correctly to compare the two solutions in			
	which one ingredient, such as NaCl, is included. However, for comparison between a solution in which one ingredient such as NaCl is included and the other solution in which more than one ingredient is included, TDS error will occur.			
	TDS and conductivity are expressed with the following formula. For Conductivity of SI unit (mS/m): TDS (mg/L) = L (mS/m) × K × 10 For Conductivity of older unit (μ S/cm): TDS (mg/L) = L (μ S/cm) × K K: TDS conversion factor, L: Conductivity			
EVT Output				
Output Action	P control action: W	hen setting the	proportional band to any	
	va	alue except 0.00		
	ON/OFF control ac	tion: When sett	ing the proportional	
		band to 0.	00 or 0.0.	
		Conductivity	Measurement range low	
	EVT	input	limit to Measurement	
	proportional		range high limit (*1)	
	band	Temperature		
	build	input	0.0 to 100.0°C (*2)	
	EVT proportiona		1 to 300 seconds	
	· · ·	Conductivity	0 to 20% of Measurement	
	EVT	input	range high limit (*1)	
	ON side, OFF side	Temperature input	0.0 to 10.0°C (*2)	
	EVT output high	limit, low limit	0 to 100%	
		Conductivity	Measurement range low	
	EVT High/Low	Conductivity	limit to Measurement	
	limits independent	input	range high limit (*1)	
	upper, lower side value	Temperature input	0.0 to 100.0°C (*2)	
		Conductivity	1 to 20% of Measurement	
		input	range high limit (*1)	
	EVT hysteresis	Temperature input	0.1 to 10.0°C (*2)	
	(*1) The measurement unit and decima		l point place follow the	
	measurement range. (*2) The desired point place does not follow the selection. It is fixed			
	(*2) The decimal point place does not follow the selection. It is fixed.			

Туре	Selectable by the keypad from the following.		
	[See EVT1 action. (Fig.9.2-1) (pp. 48, 49)]		
	• No action		
	Conductivity input low limit action		
	Conductivity input high limit action		
	 Temperature input low limit action 		
		ut high limit action	
	 Error output 		
	 Fail output 		
		ut error alarm output	
		ut High/Low limits independent action	
	 Temperature inp 	out High/Low limits independent action	
Output	Relay contact 1a		
		3 A 250 V AC (resistive load)	
	Control capacity	1 A 250 V AC (inductive load $\cos\phi$ =0.4)	
	Electrical life	100,000 cycles	
EVT ON Delay	0 to 10000 secon	ds	
Time			
EVT OFF Delay	0 to 10000 secon	ds	
Time			
Output ON Time/	If ON time and OF	FF time are set, the output can be turned	
OFF Time when		igured cycle when EVT output is ON.	
EVT Output ON		Output ON time and OFF time when	
	-	N)". (Fig. 9.2-2) (p.50)	
Conductivity Input	Detects actuator	trouble.	
Error Alarm	Even if conductiv	ity input error alarm time has elapsed, and	
	if conductivity	input does not become higher than	
	conductivity input	t error alarm band, the unit assumes that	
	actuator trouble h	has occurred, and sets Status flag 2 (EVT1,	
	EVT2, EVT3, EV	T4 output flag bit).	
	In Serial commu	unication, status can be read by reading	
	Status flag 2 (EV	T1, EVT2, EVT3, EVT4 output flag bit).	
	When EEUL	(Conductivity input error alarm output) is	
		1 type (p.27)], EVT1 output is turned ON.	
	-	s to EVT2, EVT3 and EVT4.	
		it error alarm is disabled in the following	
	cases.	with collibration	
	During conduction	-	
		vity input error alarm time is set to 0 (zero)	
	seconds or minutes, or Conductivity input error alarm band		
Ousla Automati	is set to 0.00. If deviation between EVT□ value and measured value		
Cycle Automatic			
Variable Function	enters EVT cycle variable range, the proportional cycle		
		ically extended in accordance with the	
1	deviation. Proportional action OFF time will be extended,		
	and ON/ OFF rat	io will be adjusted.	
	and ON/ OFF rat However, if EVT		

Insulation, Dielectric Strength

Circuit Insulation			
Configuration	Power supply		
	EVT1 output Serial communication		
	EVT2 output Transmission output 1 EVT3 output Transmission output 2		
	EVT3 output Transmission output 2		
	EVT4 output		
	GND		
	Insulation Resistance:10 M Ω minimum, at 500 V DC		
Dielectric Strength	Power terminal - ground (GND): 1.5 kV AC for 1 minute Input terminal - ground (GND): 1.5 kV AC for 1 minute Input terminal - power terminal: 1.5 kV AC for 1 minute		
Attached Functions			
Set Value Lock	Lock 1: None of the set values can be changed. Lock 2: Only EVT1, EVT2, EVT3, EVT4 values can be changed. Lock 3: All set values – except Sensor cell constant, Measure- ment unit, Measurement range, Conductivity Zero and Span adjustment values, Temperature calibration value, Transmission output 1 Zero and Span adjust- ment values, Transmission output 2 Zero and Span adjustment values – can be temporarily changed. However, they revert to their previous value after the power is turned off because they are not saved in the non-volatile IC memory.		
Conductivity Input Sensor Correction	This corrects the input value from the conductivity sensor. When conductivity measured by the sensor may deviate from the conductivity in the measured location, the desired conductivity can be obtained by adding a sensor correction value. However, it is only effective within the measurement range regardless of the sensor correction value. If $\Box F F$ (No temperature compensation) is selected in [Temperature compensation method (p.25)], the item to be indicated on the Temperature Display can be selected.		
Temperature Display when No Temperature Compensation			
Cable Length Correction	If $\mathcal{Z}[\omega]$ $\mathcal{R}\mathcal{E}$ (2-wire type) is selected in [Pt100 input wire type (p.26)], and if sensor cable is too long, temperature measurement error will occur due to cable resistance. This can be corrected by setting the cable length correction value and cable cross-section area.		

Outside	When Conductivity measured value, Salinity conversion or			
Measurement	TDS conversion factor is outside the measurement range, the			
Range	following will be indicated.			lououronnon rungo, ino
	Conductivity Display		Tem	perature Display
	Conductivity,	<u> </u>		ure measurement
	conversion h		value	
	TDS convers	ion high limit		
	is flashing.			
	When tempe	erature measur	ement value	e is outside the
		nt range, the fo		
		vity Display		perature Display
	Measured co	onductivity		g 110.0°C: <i>ERRD∃</i>
	Measured co		Less than	
Power Failure Countermeasure	_		-	n-volatile IC memory.
Self-diagnosis		atus occurs, t		ndog timer, and if an 02-ECH is switched to
Bar Graph Indication	When $\int R \rho f l$ (Transmission output 1) or $\int R \rho f d$ (Transmission output 2) is selected in [Bar graph indication (p.41)], segments light in accordance with the output. Scale is -5 to 105%. Segments will light from left to right in accordance with the output.			h [Bar graph indication with the output.
	(e.g.) Whe	n output is 50%	6	
	-5%	50%	1	05%
	Lights from	left to right in a		
Warm-up Indication		elow are indicat		er is switched ON, the conductivity Display and
	Display	Character	Ме	asurement Unit
		coNV 🗌	Conductivi	ty (mS/cm, μ S/cm)
	O and a stinite	5/	Conductivi	ty (S/m, mS/m)
	Conductivity	4 <i>ER</i>	Seawater s	salinity (%)
	Display		NaCl salinity (%)	
		ſď5	TDS conve	ersion (g/L, mg/L)
			Input tem-	
	Display	Character	perature spec. (*)	[Pt100 input wire type] (p.26)
	Tomporatura	PF 2	D+100	2.8 RE: 2-wire type
	Temperature -		Pt100	리세 RE: 3-wire type
	Display	PF ID	Pt1000	
	(*) This input temperature specification was specified at the time of ordering.			specified at the time of

Conductivity Color	Selects the Conductivity Disp	lay color.
Selection	Selection Item in [Conductivity Color (p.40)]	Conductivity Display Color
	GRN	Green
	REd	Red
	oRG	Orange
	EEGR	Conductivity color changes continuously.
	value] ± [Conductivity colo • When Conductivity is higher reference value] + [Conduct Orange Green Red ← ↓ ↓ ↓ ↓ ↓ ↓ ↓	anges according to value (p.40)] and 0)] settings. than [Conductivity color vity color range]: Orange [Conductivity color reference r range]: Green than [Conductivity color

Error Code

Error Code			Error codes below flash on the Temperature Display.			
	Error	Error	Error	Description	Occur-	
	Code	Туре	Contents	Description	rence	
	ERRO I	Fail	Temperature sensor	Temperature sensor lead		
			burnout	wire is burnt out.	\//han	
	ERROZ	Fail	Temperature sensor	Temperature sensor lead	When	
			short-circuited	wire is short-circuited.	Measur-	
	ERRO3	Error	Outside temperature	Measured temperature	ing and calibrat-	
			compensation range	has exceeded 110.0℃.		
	ERROY	Error	Outside temperature	Measured temperature is	ing	
			compensation range	less than 0.0℃.		

Other

Power Consumption	Approx. 13 VA
Ambient Temperature	0 to 50 ℃
Ambient Humidity	35 to 85 %RH (Non-condensing)
Altitude	2,000 m or less
Installation environment	Overvoltage category II , Pollution degree 2
Memory protection	Non-volatile IC memory (Number of writes: 1 million times)
Environmental specification	RoHS directive compliant
Weight	Approx. 280 g
Accessories Included	Unit label: 1 sheet
	Mounting brackets: 1 set
	Instruction manual: 1 copy
	Inspection report: 1 sheet
	When Serial communication (C5 option) is ordered:
	Wire harness C5J (0.2 m): 1 length
	Wire harness C0J (3 m): 1 length
	When EVT3, EVT4 outputs (Contact output 3, 4) (EVT3
	option) are/is ordered:
	Wire harness HBJ (3 m): 2 lengths
Accessories Sold	Terminal cover
Separately	

10.2 Optional Specifications

Serial Communication (Option code: C5)

Serial Communication	 The following operations can be carried out from an external computer. (1) Reading and setting of various set values (2) Reading of the conductivity, salinity conversion, temperature and status (3) Function change, adjustment (4) Reading and setting of user save area
Cable Length	1.2 km (Max.), Cable resistance: Within 50 Ω (Terminators are not necessary, but if used, use 120 Ω minimum on one side.)
Communication Line	EIA RS-485
Communication Method	Half-duplex communication
Communication Speed	9600, 19200, 38400 bps (Selectable by keypad)
Synchronization Method	Start-stop synchronization
Code Form	ASCII, Binary
Communication Protocol	Shinko protocol, MODBUS ASCII, MODBUS RTU (Selectable by keypad)
Data Bit/Parity	8 bits/No parity, 7 bits/No parity, 8 bits/Even, 7 bits/Even, 8 bits/Odd, 7 bits/Odd (Selectable by keypad)
Stop Bit	1 bit, 2 bits (Selectable by keypad)
Error Correction	Command request repeat system

Error Detection	Parity check, Checksum (Shinko protocol), LRC (MODBUS protocol ASCII), CRC-16 (MODBUS protocol RTU)			
Data Format	Communication Protocol	Shinko Protocol	MODBUS ASCII	MODBUS RTU
	Start bit	1	1	1
	Data bit	7	7 (8) Selectable	8
	Parity	Even	Even	No parity
			(No parity, Odd) Selectable	(Even, Odd) Selectable
	Stop bit	1	1 (2)	1 (2)
			Selectable	Selectable

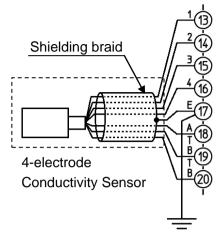
EVT3, EVT4 Outputs (Contact output 3, 4) (Option code: EVT3)

EVT3, EVT4 Outputs	Same as the EVT output (pp. 58, 59)
(Contact output 3, 4)	

Transmission Output 2 (Option Code: TA2)

E	ansinission Output 2 (
	Transmission Output	Converting conductivity, temperature or MV to analog signal			
	2	every input sampling period, and outputs the value in current.			
		If $\sigma F F$ (No temperature compensation) is selected in			
		[Temperature compensation method (p.25)], and if $\int \mathcal{E}M\mathcal{P}$			
		(Temperature transmission) is selected in [Transmission			
		output 2 type (p.38)], Transmission output 2 value will differ		
		depending on the s	election in [Temperature Display when no		
		temperature compe	ensation (p.41)] as follows.		
			or 57 d (Reference temperature) is		
			set in [Reference temperature (p.25)] will		
		be output.			
			sured value) is selected, the measured		
		value will be outpu			
		•	out 2 high limit and low limit are set to the		
			nission output 2 will be fixed at 4 mA DC.		
			•		
		Resolution 12000			
		Current 4 to 20 mA DC			
			(Load resistance: Max 550 Ω) Within ±0.3% of Transmission output		
		Output accuracy	2 Span		
	Transmission		Transmission output 2 can be performed		
	Output 2	via Transmission ou	utput 2 Zero adjustment and Span		
	Adjustment	adjustment.			
	Transmission	Transmission output	t 2 status can be selected when		
	Output 2 Status	calibrating conducti	vity.		
	when Calibrating	Last value HOLD: Retains the last value before conductivity			
		calibration, and outputs it.			
		Set value HOLD: Outputs the value set in [Transmission			
		output 2 value HOLD when calibrating].(p.39)			
		Measured value: Outputs the measured value when			
		calibrating conductivity.			
_					

11. Troubleshooting If any malfunction occurs, refer to the following items after checking that power is being supplied to the AER-102-ECH.


11.1 Indication

Problem	Possible Cause	Solution
The Conductivity/	The time set in [Backlight time	If any key is pressed while
Temperature	(p.41)] has passed.	displays are unlit, it will re-light.
Displays are unlit.		Set the backlight time to a
		suitable time-frame.
Indication of the	Conductivity calibration and	Perform conductivity
Conductivity Display	temperature calibration may	calibration and temperature
or Temperature	not have finished.	calibration.
Display is unstable or	Temperature compensation	Select a correct Temperature
irregular.	method might not be selected correctly.	compensation method.
	Specification of the conductivity	Replace the sensor with a
	sensor may not be suitable.	suitable one.
	There may be equipment that	Keep AER-102-ECH clear of
	interferes with or makes noise	any potentially disruptive
	near the AER-102-ECH.	equipment.
		Try [Grounding of shield wire
The Terrere weture		terminal (E) (P.66)]. Select <i>'ヮ゙゙゙</i> ヮ゙゙
The Temperature Display is unlit.	<i>□FF</i> (Unlit) is selected in [Temperature Display when no	temperature) or PV
Display is utilit.	temperature compensation	(Measured value).
	(p.41)].	(measured value).
[ERRC /] is flashing	The temperature sensor lead	Replace with a new
on the Temperature	wire is burnt out.	conductivity sensor.
Display.		
[ERRG2] is flashing	The temperature sensor lead	Replace with a new
on the Temperature	wire is short-circuited.	conductivity sensor.
Display.		
[ERRG3] is flashing	The measured temperature	Check the measuring
on the Temperature	value has exceeded 110.0℃.	environment.
Display.		
[ERRDY] is flashing	The measured temperature	Check the measuring
on the Temperature	value is less than 0.0℃.	environment.
Display.		
[<i>ERR 1</i>] is	Internal memory is defective.	Contact our agency or us.
indicating on the		
Conductivity Display.		

Grounding of shield wire terminal (E) If the indication fluctuates due to noise, ground the shield wire terminal (E). However, depending on the installation environment, the symptom may not be improved. In this case, disconnect the grounding of the shield wire terminal (E) and return it to the original state.

(Depending on the type of sensor, the cable for

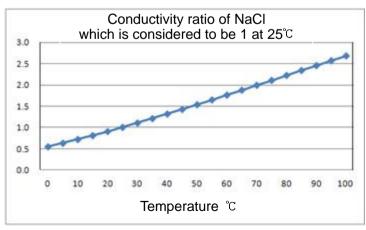
the shield wire terminal (E) may not be available.)

11.2 Key Operation

Problem	Possible Cause	Solution
Unable to set values.	Lock 1 (Lock 1) or $Lock\overline{c}$	Select (Unlock).
	(Lock 2) is selected in [Set	
The values do not	value lock (p.36)].	
change by the \triangle or	(The LOCK indicator is lit when	
∕⊂ key.	Lock 1 or Lock 2 is selected.)	

12. Temperature Compensation Method

12.1 Temperature Compensation Based on the Temperature Characteristics of NaCl


When the main ingredient of the salt contained in a sample is NaCl, use temperature compensation method based on the temperature characteristics of NaCl.

Conductivity of NaCl solution varies with the ratio based on the conductivity at 25° C as shown below.

The conductivity at 25° C is calculated on the basis of the conductivity ratio at each temperature in (Table 12.1-1).

Temper-	Conductivity	Coeffi-
ature (°C)	ratio of NaCl	cient
0	0.542	1.845
5	0.626	1.596
10	0.715	1.399
15	0.806	1.240
20	0.902	1.109
25	1.000	1.000
30	1.101	0.908
35	1.205	0.830
40	1.312	0.762
45	1.420	0.704
50	1.531	0.653
55	1.643	0.609
60	1.757	0.569
65	1.872	0.534
70	1.987	0.503
75	2.103	0.476
80	2.219	0.451
85	2.335	0.428
90	2.450	0.408
95	2.564	0.390
100	2.677	0.374

(Table 12.1-1)

(Fig.12.1-1)

12.2 How to Input Temperature Coefficient

Temperature compensation is conducted using temperature coefficient (%/ $^{\circ}$ C) and a randomly selected reference temperature.

Conductivity of the solution varies depending on the temperature.

If temperature rises by 1°C, the conductivity rises by 2% at 25°C $\,$ basis in general.

Temperature coefficient differs depending on the solution type and its concentration, which ranges from 0.50 to 2.50.

By inputting the temperature coefficient, temperature compensation can be calculated to find the conductivity at 25°C.

Temperature coefficient 2.00 %/°C can be used for most of solutions.

If temperature coefficient of solution is already-known, enter the value. (Table 12.2-1)

If the conductivity at an arbitrary temperature $T^{\circ}C$ is already-known, and if reference temperature is $ST^{\circ}C$, conductivity $C_{(ST)}$ at the reference temperature can be obtained according to the following formula.

$$C_{(ST)} = \frac{C_{(T)}}{(1 + 0.01 \times \alpha \times (T - ST))}$$

 $C_{(ST)}$: Conductivity of the solution at ST[°]C

- $C_{(T)}$: Conductivity of the solution at T[°]C
- α : Temperature coefficient of conductivity (%)
- *T*: Arbitrary temperature $T^{\circ}C$
- ST: Reference temperature ST[℃]

(Table 12.2-1)

(104														
Sub- stance	lempe- rature (℃)	Concen- tration Wt%	Conduc- tivity S/m	Temperature coefficient (%/°C)	Sub- stance	rature (°C)	Concen- tration Wt%	Conduc- tivity S/m	Temperature coefficient (%/℃)					
		5	19.69	2.01			5	6.72	2.17					
		10	31.24	2.17			10	12.11	2.14					
NaOH	15	15	34.63	2.49	NaCl	18	15	16.42	2.12					
NaOIT	15	20	32.70	2.99			20	19.57	2.16					
		30	20.22	4.50			25	21.35	2.27					
		40	11.64	6.48			5	4.09	2.36					
		25.2	54.03	2.09	Na ₂ SO ₄	18	10	6.87	2.49					
кон	15	29.4	54.34	2.21			15	8.86	2.56					
KOH	15	33.6	52.21	2.36			5	4.56	2.52					
		42	42.12	2.83	Na ₂ CO ₃	18	10	7.05	2.71					
		0.1	0.0251	2.46			15	8.36	2.94					
		1.6	0.0867	2.38					5	6.90	2.01			
NH ₃	15	4.01	0.1095	2.50										
		8.03	0.1038	2.62	KCI	18	15	20.20	1.79					
		16.15	0.0632	3.01			20	26.77	1.68					
		1.5	1.98	0.72			21	28.10	1.68					
HF	18	4.8	5.93	0.66			5	4.65	2.06					
		24.5	28.32	0.58	KBr	15	10	9.28	1.94					
		5	39.48	1.58			20	19.07	1.77					
HCI	18	10	63.02	1.56			3.25	5.07	2.07					
	10	20	76.15	1.54	KCN	15	6.5	10.26	1.98					
		30	66.20	1.52			-	-	-					

Sub- stance	Tempe- rature (°C)	Concen- tration Wt%	Conduc- tivity S/m	Temperature coefficient (%/°C)	Sub- stance	Tempe- rature (°C)	Concen- tration Wt%	Conduc- tivity S/m	Temperature coefficient (%/°C)								
	5	20.85	1.21			5	9.18	1.98									
		10	39.15	1.28			10	17.76	1.86								
		20	65.27	1.45	NH ₄ CI	18	15	25.86	1.71								
		40	68.00	1.78			20	33.65	1.61								
H_2SO_4	18	50	54.05	1.93			25	40.25	1.54								
		60	37.26	2.13			5	5.90	2.03								
		80	11.05	3.49	NH4NO3 15	NH ₄ NO ₃ 15							10	11.17	1.94		
		100.14	1.87	0.30			141103 15	30	28.41	1.68							
		-	-	-		50	36.22	1.56									
		6.2	31.23		CuSO4			2.5	10.90	2.13							
		12.4	54.18				CUSO.	CUSO.	CUSO.	CUSO.			CUSO/	CuSO₄ 18	10	5	18.90
HNO ₃	18	31	78.19	Cusc		10	10	32.00	2.18								
		49.6	63.41				15	42.10	2.31								
		62	49.64				10	15.26	1.69								
		10	5.66				15	16.19	1.74								
		20	11.29			18	20	16.05	1.79								
H ₃ PO ₄	15	40	20.70		- CH3COOH	10	30	14.01	1.86								
		45	20.87				40	10.81	1.96								
		50	20.73				60	4.56	2.06								

13. Character Tables

The following shows our character tables. Use data column for your reference.

13.1 Setting Group List

Character	Setting Group	Reference Section
F.N.c. 1	Conductivity Input Group	Section 13.7 (pp.73, 74)
F.Nc.2	Temperature Input Group	Section 13.8 (pp.75)
$EV \Gamma_{\Box} I$	EVT1 Action Group	Section 13.9 (pp.76, 77)
ΕμΓ.α.2	EVT2 Action Group	Section 13.10 (pp.78, 79)
ΕμΓ.α.3	EVT3 Action Group	Section 13.11 (pp.80, 81)
EVFaH	EVT4 Action Group	Section 13.12 (pp.82, 83)
a.F.E.R	Basic Function Group	Section 13.13 (pp.84 to 86)

13.2 Temperature Calibration Mode

Character	Setting Item, Setting Range	Factory Default	Data
ら (*)	Temperature calibration value	0.0℃	
0	-10.0 to 10.0℃		

(*) '¬ [] and temperature are displayed alternately.

13.3 Conductivity Calibration Mode

Character	Setting Item, Setting Range	Factory Default	Data
RduZ_(*)	Conductivity Zero adjustment value	0.00	
000	See (Tables 13.3-1, 13.3-2) (p.71)		
Rdu'h_(*)	Conductivity Span adjustment value	1.000	
000	0.700 to 1.300		

(*) BddZ and conductivity are displayed alternately.

 $BdJ' \Box$ and conductivity are displayed alternately.

(Table 13.3-1)

Mea	surement Range	Conductivity Zero Adjustment Value Setting Range
	0.00 to 20.00 mS/cm	-2.00 to 2.00
	0.0 to 200.0 mS/cm	-20.0 to 20.0
	0.0 to 500.0 mS/cm	-50.0 to 50.0
	0 to 500 mS/cm	-50 to 50
	0.000 to 2.000 mS/cm	-0.200 to 0.200
	0.000 to 5.000 mS/cm	-0.500 to 0.500
	0.00 to 50.00 mS/cm	-5.00 to 5.00
	0 to 2000 <i>µ</i> S/cm	-200 to 200
	0 to 5000 <i>µ</i> S/cm	-500 to 500
Call	0.000 to 2.000 S/m	-0.200 to 0.200
Cell constant	0.00 to 20.00 S/m	-2.00 to 2.00
1.0/cm	0.00 to 50.0 S/m	-5.00 to 5.00
1.0/011	0.0 to 50.0 S/m	-5.0 to 5.0
	0 to 2000 mS/m	-200 to 200
	0.000 to 5.000 S/m	-0.500 to 0.500
	0.0 to 200.0 mS/m	-20.0 to 20.0
	0.0 to 500.0 mS/m	-50.0 to 50.0
	0.0 to 20.0 g/L	-2.0 to 2.0
	0 to 200 g/L	-20 to 20
	0 to 500 g/L	-50 to 50
	0 to 2000 mg/L	-200 to 200
	0 to 5000 mg/L	-500 to 500

(Table 13.3-2)

Mea	surement Range	Conductivity Zero Adjustment Value Setting Range
	0.0 to 200.0 mS/cm	-20.0 to 20.0
	0.0 to 500.0 mS/cm	-50.0 to 50.0
	0 to 2000 mS/cm	-200 to 200
Cell	0.00 to 20.00 S/m	-2.00 to 2.00
constant	0.00 to 50.00 S/m	-5.00 to 5.00
10.0/cm	0.0 to 200.0 S/m	-20.0 to 20.0
	0 to 200 g/L	-20 to 20
	0 to 500 g/L	-50 to 50
	0 to 2000 g/L	-200 to 200
Seawater sa	alinity 0.00 to 4.00%	-0.40 to 0.40
NaCI salinity	y 0.00 to 20.00%	-2.00 to 2.00

13.4 Transmission Output 1 Adjustment Mode

Character	Setting Item, Setting Range	Factory Default	Data
RJZ I	Transmission output 1 Zero	0.00%	
000	adjustment value		
	±5.00% of Transmission output 1 s	span	
R_J\ I[]	Transmission output 1 Span	0.00%	
000	adjustment value		
	±5.00% of Transmission output 1 s	span	

13.5 Transmission Output 2 Adjustment Mode

Character	Setting Item, Setting Range	Factory Default	Data
RJZ2	Transmission output 2 Zero	0.00%	
000	adjustment value		
	±5.00% of Transmission output 2 s	span	
RJ52	Transmission output 2 Span	0.00%	
000	adjustment value		
	±5.00% of Transmission output 2 s	span	

13.6 Simple Setting Mode

	Cotting Hom Cotting Dongo		Dete
Character	Setting Item, Setting Range		Data
E51/ 1	EVT1 value	Conductivity input: Measurement	
000		range low limit	
		Temperature input: 0.0°C	
	Conductivity input: Measurement range low limit to		
	Measurement range high limit		
	Temperature input: 0.0 to 100.0℃		
E 51/2	EVT2 value	Conductivity input: Measurement	
000		range low limit	
		Temperature input: 0.0°C	
	Conductivity input: Measurement range low limit to		
	Measurement range high limit		
	Temperature input: 0.0 to 100.0℃		
E4#3	EVT3 value	Conductivity input: Measurement	
000		range low limit	
		Temperature input: 0.0℃	
	Conductivity input: Measurement range low limit to		
	Measurement range high limit		
	Temperature input: 0.0 to 100.0℃		
E 41/4	EVT4 value	Conductivity input: Measurement	
000		range low limit	
		Temperature input: 0.0°C	
	Conductivity input: Measurement range low limit to		
	Measurement range high limit		
	Temperature input: 0.0 to 100.0℃		

13.7 Conductivity Input Group

Character	Setting Item, Setting Range	Facto	ry Default	Data
ELL	Sensor cell constant	1.0/cm		
	<u>μ</u> : 1.0/cm			
	□□□ /ɑɑ: 10.0/cm			
08F	Cell constant correction value	1.000		
000	Setting range: 0.001 to 5.000			
	Measurement unit Conduct	tivity (mS/	cm, μ S/cm)	
coNV 🗌	<i>⊏ םN</i> ル□: Conductivity (mS/cm, ル	US/cm)		
	らり : Conductivity (S/m, mS/	-		
	Seawater salinity conve			
	5817 : NaCl salinity conversion			
	「ゴム」:TDS conversion (g/L, m			
MRNE	Measurement range	20.00 mS	S/cm	
2000	See (Table 13.7-1, 13.7-2) (p.74)			
Fdhk	TDS conversion factor	0.50		
<u>0</u> .50	Setting range: 0.30 to 1.00			
<u>FI [1</u>	Conductivity input filter time const	ant	0.0 seconds	
00	Setting range: 0.0 to 10.0 seconds			
Eho	Conductivity input sensor correctio	n	0.00 mS/cm	
000	Setting range: ±10% of measurem	ent span		
565 R	3-electrode Conductivity Sensor re	sistance	0Ω	
	Setting range: 0 to 100 Ω			
dFcF	Conductivity inputs for moving ave	erage	20	
20	Setting range: 1 to 120			

Measurement	Selection	Measurement
Unit	Item	Range
	20.00	0.00 to 20.00 mS/cm
	2000	0.0 to 200.0 mS/cm
	<u> </u>	0.0 to 500.0 mS/cm
Conductivity	500	0 to 500 mS/cm
(mS/cm, μ S/cm)	2000	0.000 to 2.000 mS/cm
	5.000	0.000 to 5.000 mS/cm
	<u> </u>	0.00 to 50.00 mS/cm
	2000	0 to 2000 µS/cm
	S000	0 to 5000 µS/cm
	2000	0.000 to 2.000 S/m
	20.00	0.00 to 20.00 S/m
Conductivity	<u> </u>	0.00 to 50.00 S/m
Conductivity (S/m, mS/m)	500	0.0 to 50.0 S/m
(0/11, 110/11)	5.000	0.000 to 5.000 S/m
	2000	0.0 to 200.0 mS/m
	S0Q0	0.0 to 500.0 mS/m
	200	0.0 to 20.0 g/L
TDS conversion	200	0 to 200 g/L
(g/L, mg/L)	500	0 to 500 g/L
(g/L, IIIg/L)	2000	0 to 2000 mg/L
	5000	0 to 5000 mg/L
Seawater salinity (%)	400	0.00 to 4.00%
NaCl salinity (%)	2000	0.00 to 20.00%

(Table 13.7-1) When sensor cell constant 1.0/cm is selected:

(Table 13.7-2) When sensor cell constant 10.0/cm is selected:

Measurement	Selection	Measurement
Unit	Item	Range
Conductivity	2000	0.0 to 200.0 mS/cm
Conductivity (mS/cm, µS/cm)	<u> </u>	0.0 to 500.0 mS/cm
	2000	0 to 2000 mS/cm
Conductivity	2000	0.00 to 20.00 S/m
Conductivity (S/m, mS/m)	5000	0.00 to 50.00 S/m
(3/11, 113/11)	2000	0.0 to 200.0 S/m
	200	0 to 200 g/L
TDS conversion	500	0 to 500 g/L
(g/L, mg/L)	2000	0 to 2000 g/L
Seawater salinity (%)	400	0.00 to 4.00%
NaCl salinity (%)	2000	0.00 to 20.00%

13.8 Temperature Input Group

Character	Setting Item, Setting Range	Factory Default	Data	
Г <u>с</u> М	Temperature compensation method	NaCl		
NAEL	NR=L: Temperature compensation is conducted using			
	temperature characteristics of	NaCl. Select when		
	the main ingredient of salt in	cluded in a sample		
	is NaCl.			
	$\int c \sigma E$: Temperature compensation is	conducted using		
	temperature coefficient (%/°C) and randomly		
	selected reference temperatu			
	□ F F: No temperature compensatio			
KeoE	Temperature coefficient	2.00 %/°C	_	
200	Setting range: -5.00 to 5.00 %/°C			
55Nd	Reference temperature	25.0° ℃	_	
25.0	Setting range: 5.0 to 95.0°C			
dP2		it after decimal point	-	
	\Box : No decimal point			
	. 1 digit after decimal point			
eNEeF	Pt100 input wire type	3-wire type	_	
3MI RE	E = 2 · wire type			
	글니 RE : 3-wire type			
<u>c8618</u>	Cable length correction	0.0 m	-	
	Setting range: 0.0 to 100.0 m			
<u>c 48 c</u>	Cable cross-section area	0.30 mm ²	_	
030	Setting range: 0.10 to 2.00 mm ²			
FIFZ	Temperature input filter time constant	0.0 seconds	4	
0	Setting range: 0.0 to 10.0 seconds	-		
dFcf	Temperature inputs for moving	20		
20	average		-	
	Setting range: 1 to 120			

13.9 EVT1 Action Group

3.9 EVI1 Actic		Eastory Default	Data		
Character	Setting Item, Setting Range	Factory Default	Data		
	EVT1 type				
	E = L Conductivity input	low limit action			
	$E = H \square$: Conductivity input				
	F E MPL: Temperature input low limit action				
	F E MPH: Temperature input low limit action				
	$ER_{a}UT$: Error output				
	FRI LE: Fail output				
	EEUL: Conductivity input	error alarm output			
		igh/Low limits independent action			
		ligh/Low limits independent action			
<u> 54% 1</u>	EVT1 value	Conductivity input: Measure-			
000		ment range low limit Temperature input: 0.0°C			
	Conductivity input: Measurer				
		nent range high limit			
	Temperature input: 0.0 to 100				
EP (EVT1 proportional band	Conductivity input: Measure-			
0.00		ment range low limit			
		Temperature input: 0.0℃			
	Conductivity input: Measurer	-			
		nent range high limit			
- 191 F	Temperature input: 0.0 to 100				
	EVT1 reset	Conductivity input: 0.00 mS/cm			
000	Conductivity inputs + 10% of	Temperature input: 0.0°C			
	Conductivity input: ±10% of Temperature input: ±10.0℃	Measurement span			
EIBLE	EVT1 hysteresis type	Reference Value			
5 di F	c d F: Medium Value				
	<i>'-d' F</i> : Reference Value				
EIdFo	EVT1 ON side	Conductivity input: 0.01 mS/cm			
		Temperature input: 1.0°C			
	Conductivity input: 0.00 to 20%	6 of Measurement range high limit			
	Temperature input: 0.0 to 10.0				
Е ІВЕЦ	EVT1 OFF side	Conductivity input: 0.01 mS/cm			
00 /		Temperature input: 1.0°C			
		6 of Measurement range high limit			
	Temperature input: 0.0 to 10.0				
ELONE	EVT1 ON delay time	0 seconds			
	Setting range: 0 to 10000 se				
	EVT1 OFF delay time	0 seconds			
	Setting range: 0 to 10000 se				
	EVT1 proportional cycle	30 seconds			
30	Setting range: 1 to 300 seco	onds			
EIGLH	EVT1 output high limit	100%			
III 100	Setting range: EVT1 output	low limit to 100%			

Character	Setting Item, Setting	Range	Factory Default	Data
EloLL	EVT1 output low limit	-	0%	
	Setting range: 0% to EVT1 c	output high lim	it	
00NF 1	Output ON time when EVT1 of	output ON	0 seconds	
	Setting range: 0 to 10000 se	econds		
00FF 1	Output OFF time when EVT	1 output ON	0 seconds	
	Setting range: 0 to 10000 se	econds		
E 1240	EVT1 conductivity input erro	or alarm	No action	
	EVT type			
	Eビデビー:No action Eビデビー:EVT2 type			
	$E \lor \Gamma B = E \lor \Gamma 2$ type E $\lor \Gamma B = E \lor T 3$ type			
	<i>EVTY</i> : EVT4 type			
E 1600	EVT1 conductivity input err	or alarm	Measurement	
000	band when EVT output O		range low limit	
	Measurement range low limit		* *	
E IEar	EVT1 conductivity input err		0 seconds	
	time when EVT output Of		ltoc	
	Setting range: 0 to 10000 se EVT1 conductivity input err		Measurement	
	band when EVT output O		range low limit	
	Measurement range low limit			
ElEct	EVT1 conductivity input err	or alarm	0 seconds	
<i>D</i>	time when EVT \Box output OF	FF		
	Setting range: 0 to 10000 se	econds or min	utes	
MKZN I	EVT1 cycle variable range		50.0%	
500	Setting range: 1.0 to 100.0%	, 0		
ENT	EVT1 cycle extended time		0 seconds	
	Setting range: 0 to 300 seco	1		
	EVT1 High/Low limits	Conductivity	•	
	independent lower side value	Temperature	nent range low limit	
	Conductivity input: Measure	· · · · ·		
		ement range h		
	Temperature input: 0.0 to 10			
E I_H	EVT1 High/Low limits	Conductivity	-	
000	independent upper side		nent range low limit	
	value Conductivity input: Measure	Temperature	•	
		•		
	Measurement range high limit Temperature input: 0.0 to 100.0℃			
Е І_НУ	EVT1 hysteresis		v input: 0.01 mS/cm	
		Temperature	e input: 1.0℃	
	Conductivity input: 0.01 to 20		ment range high limit	
	Temperature input: 0.1 to 10.	.0℃		

13.10 EVT2 Action Group

Character	Setting Item, Setting Range	Factory Default	Data	
EVEZE	EVT2 type	No action		
	: No action			
	E = -L: Conductivity input			
	$\xi \in H$: Conductivity input high limit action			
	EMPL: Temperature input I			
	$\int E MPH$: Temperature input I	high limit action		
	<i>ERoUF</i> : Error output <i>FRI L</i> □: Fail output			
	<i>EEUL</i> : Conductivity input	error alarm output		
		igh/Low limits independent action		
		ligh/Low limits independent action		
E5#2	EVT2 value	Conductivity input: Measure-		
1 200		ment range low limit		
		Temperature input: 0.0℃		
	Conductivity input: Measurer			
		nent range high limit		
	Temperature input: 0.0 to 100			
<u> </u>	EVT2 proportional band	Conductivity input: Measure-		
000		ment range low limit Temperature input: 0.0℃		
	Conductivity input: Measurer		-	
		nent range high limit		
	Temperature input : 0.0 to 100			
EZRAF	EVT2 reset	Conductivity input: 0.00 mS/cm		
200		Temperature input: 0.0°C		
	Conductivity input: ±10% of	Measurement span		
	Temperature input: ±10.0℃			
E2di F	EVT2 hysteresis type	2 hysteresis type Reference Value		
581 F	c dl F Medium Value			
	<u> トローデー: Reference Value</u>			
EZdFo	EVT2 ON side	Conductivity input: 0.01 mS/cm		
00 1		Temperature input: 1.0°C		
		6 of Measurement range high limit		
E2dFU	Temperature input: 0.0 to 10.0	Conductivity input: 0.01 mS/cm		
	EVT2 OFF side	Temperature input: 1.0°C		
	Conductivity input: 0.00 to 20%	6 of Measurement range high limit		
	Temperature input: 0.0 to 10.0	0 0		
EZONE	EVT2 ON delay time	0 seconds		
	Setting range: 0 to 10000 se		1	
E20F5	EVT2 OFF delay time	0 seconds	+	
	Setting range: 0 to 10000 se		1	
E2c	EVT2 proportional cycle	30 seconds		
30	Setting range: 1 to 300 seco		1	
EZoLH	EVT2 output high limit	100%		
			-	
	Setting range: EVT2 output			

Character	Setting Item, Setting	Range	Factory Default	Data
EZoll	EVT2 output low limit	_	0%	
	Setting range: 0% to EVT2 output high limit			
ooNE2	Output ON time when EVT2 of	output ON	0 seconds	
	Setting range: 0 to 10000 se	conds		
ooff2	Output OFF time when EVT	2 output ON	0 seconds	
	Setting range: 0 to 10000 se	econds		
E2c 40	EVT2 conductivity input erro	or alarm	No action	
	EVT type			
	Eビデ ビロ : EVT1 type			
	EVT3 : EVT3 type			
	EVT Y = EVT4 type			
E2Eo	EVT2 conductivity input err	or alarm	Measurement	
000	band when EVT output O		range low limit	
	Measurement range low limit			
<u> 2929</u>	EVT2 conductivity input err		0 seconds	
	time when EVT output Of		utoo.	
EZEC	Setting range: 0 to 10000 se EVT2 conductivity input err		Measurement	
	band when EVT output O		range low limit	
	Measurement range low limit			
EZEcí	EVT2 conductivity input err		0 seconds	
	time when EVT output OF			
	Setting range: 0 to 10000 se	conds or min	utes	
MKZNZ	EVT2 cycle variable range		50.0%	
500	Setting range: 1.0 to 100.0%	, D		
ENTZ	EVT2 cycle extended time		0 seconds	
0	Setting range: 0 to 300 seco	1		
E2_L	EVT2 High/Low limits	Conductivity		
000	independent lower side value	Temperature	nent range low limit	
	Conductivity input: Measure	·		
		ement range h		
	Temperature input: 0.0 to 10	0	-	
EZ_H	EVT2 High/Low limits	Conductivity	-	
000	independent upper side		nent range low limit	
	value	Temperature		
	Conductivity input: Measurement range low limit to			
	Measurement range high limit Temperature input: 0.0 to 100.0℃			
E2_H4	EVT2 hysteresis		/ input: 0.01 mS/cm	
		Temperature		
	Conductivity input: 0.01 to 20		ment range high limit	
	Temperature input: 0.1 to 10.0℃			

13.11 EVT3 Action Group

Character	Setting Item, Setting Range	Factory Default	Data	
EVEBE	EVT3 type	No action		
	: No action			
	$\xi = -L$: Conductivity input			
	$E \subseteq H$: Conductivity input high limit action			
	FEMPL: Temperature input I			
	「EMPH: Temperature input I ERoUF: Error output	high limit action		
	FRLL: Fail output			
	EEUL: Conductivity input	error alarm outout		
		igh/Low limits independent action		
	, ,	ligh/Low limits independent action		
E 5# 3	EVT3 value	Conductivity input: Measure-		
000		ment range low limit		
		Temperature input: 0.0°C		
	Conductivity input: Measurer	nent range low limit to nent range high limit		
	Temperature input: 0.0 to 100			
EP3	EVT3 proportional band	Conductivity input: Measure-		
<u> </u>		ment range low limit		
		Temperature input: 0.0°C		
	Conductivity input: Measurer	nent range low limit to		
		nent range high limit		
	Temperature input : 0.0 to 100			
EBRSE	EVT3 reset	Conductivity input: 0.00 mS/cm		
000	Conductivity input: ±10% of	Temperature input: 0.0°C	-	
	Temperature input: ±10.0℃	Measurement span		
E 3di F	EVT3 hysteresis type	Reference Value		
581 F			-	
	<i>らば F</i> Reference Value			
E3dFo	EVT3 ON side	Conductivity input: 0.01 mS/cm		
0.0 /		Temperature input: 1.0℃		
		6 of Measurement range high limit		
	Temperature input: 0.0 to 10.0			
EBdFU	EVT3 OFF side	Conductivity input: 0.01 mS/cm		
00 1		Temperature input: 1.0°C		
		6 of Measurement range high limit		
EBONE	Temperature input: 0.0 to 10.0 EVT3 ON delay time			
	Setting range: 0 to 10000 se	0 seconds		
EBOFF	EVT3 OFF delay time	0 seconds		
	Setting range: 0 to 10000 se			
E3c	EVT3 proportional cycle	30 seconds		
30	Setting range: 1 to 300 seco		-	
EBoLH	EVT3 output high limit	100%		
	Setting range: EVT3 output			

Character	Setting Item, Setting	Range	Factory Default	Data
EBoll	EVT3 output low limit		0%	
	Setting range: 0% to EVT3 of	output high lim	nit	
00NF 3	Output ON time when EVT3 of	output ON	0 seconds	
	Setting range: 0 to 10000 se	conds		
00FF3	Output OFF time when EVT	3 output ON	0 seconds	
	Setting range: 0 to 10000 se	conds		
E3c40	EVT3 conductivity input erro	or alarm	No action	
	EVT type			
	<i>Eド「 I</i> □ : EVT1 type <i>Eド「 I</i> □ : EVT2 type			
	<i>Eド「Ч</i> □ : EVT4 type			
EBEo	EVT3 conductivity input err		Measurement	
000	band when EVT output O		range low limit	
	Measurement range low limit			
<u>838o</u>	EVT3 conductivity input err time when EVT output OI		0 seconds	
	Setting range: 0 to 10000 se			
E 3E c	EVT3 conductivity input err		Measurement	
	band when EVT output O		range low limit	
	Measurement range low limit	to Measurem	ent range high limit	
ЕЗЕсГ	EVT3 conductivity input err	or alarm	0 seconds	
	time when EVT output OI			
	Setting range: 0 to 10000 se	conds or min	utes	
MKZNE	EVT3 cycle variable range		50.0%	
500	Setting range: 1.0 to 100.0%	, D		
EENT3	EVT3 cycle extended time		0 seconds	
	Setting range: 0 to 300 seco	1		
EBLL	EVT3 High/Low limits	Conductivity	nput: nent range low limit	
000	independent lower side value	Temperature	U	
	Conductivity input: Measure		•	
		ement range h		
	Temperature input: 0.0 to 10			
EB_H	EVT3 High/Low limits	Conductivity		
000	independent upper side value	Measuren Temperature	nent range low limit	
	Conductivity input: Measure		•	
	Measurement range high limit			
	Temperature input: 0.0 to 10	-	с	
EB_HY	EVT3 hysteresis	Conductivity	v input: 0.01 mS/cm	
00 1		Temperature		
	Conductivity input: 0.01 to 20		ment range high limit	
	Temperature input: 0.1 to 10	.0 [°] C		

13.12 EVT4 Action Group

	Setting Item, Setting Range	Factory Default	Data	
ЕКГЧЕ	EVT4 type	No action		
	No action			
	E = L: Conductivity input			
	$\mathcal{E} \subset \mathcal{H}$: Conductivity input high limit action			
	$\int EMPL$: Temperature input low limit action			
	ΓΕΜΡΗ: Temperature input h	nigh limit action		
	ERaLIT: Error output			
	FRI L. Fail output			
	EEUL : Conductivity input	igh/Low limits independent action		
		ligh/Low limits independent action		
ESKY	EVT4 value	Conductivity input: Measure-		
200		ment range low limit		
		Temperature input: 0.0°C		
	Conductivity input: Measuren	-		
		nent range high limit		
	Temperature input: 0.0 to 100			
	EVT4 proportional band	Conductivity input: Measure-		
000		ment range low limit Temperature input: 0.0°C		
	Conductivity input: Measuren			
		nent range high limit		
	Temperature input : 0.0 to 100	0 0		
EHRHE	EVT4 reset	Conductivity input: 0.00 mS/cm		
000		Temperature input: 0.0°C		
	Conductivity input: ±10% of			
	Temperature input: ±10.0℃			
EHALF	EVT4 hysteresis type	Reference Value		
5 <i>dl F</i> ⊡	<i>こ d! F</i> □: Medium Value <i>トd! F</i> □: Reference Value			
ЕЧдЕр	EVT4 ON side	Conductivity input: 0.01 mS/cm		
i ao i		Temperature input: 1.0℃		
ii'i'	Conductivity input: 0.00 to 20%	6 of Measurement range high limit		
	Temperature input: 0.0 to 10.0			
ЕЧАЕЦ	EVT4 OFF side	Conductivity input: 0.01 mS/cm		
		Temperature input: 1.0°C		
	Conductivity input: 0.00 to 20%	6 of Measurement range high limit		
	Temperature input: 0.0 to 10.0)°C		
EHANT	EVT4 ON delay time	0 seconds		
	Setting range: 0 to 10000 se	econds		
ЕЧЬЕГ	EVT4 OFF delay time	0 seconds		
	Setting range: 0 to 10000 se	econds		
ЕЧс	EVT4 proportional cycle	30 seconds		
30	Setting range: 1 to 300 seco			
EYOLH	EVT4 output high limit	100%		
100	Setting range: EVT4 output I			

Character	Setting Item, Setting	Range	Factory Default	Data
EYOLL	EVT4 output low limit		0%	
	Setting range: 0% to EVT4 output high limit			
ooNF4	Output ON time when EVT4	output ON	0 seconds	
	Setting range: 0 to 10000 seconds			
00864	Output OFF time when EVT	4 output ON	0 seconds	
	Setting range: 0 to 10000 se	econds		
E465	EVT4 conductivity input erro	or alarm	No action	
	EVT□ type <i>EVT</i> /□ : EVT1 type			
	EVIT 2 : EVT2 type			
	<i>EVI</i> : EVT3 type			
	: No action			
EHED	EVT4 conductivity input er		Measurement	
000	band when EVT output O		range low limit	
	Measurement range low limit			
	EVT4 conductivity input err time when EVT output O		0 seconds	
	Setting range: 0 to 10000 se		Ites	
EHEC	EVT4 conductivity input er		Measurement	
	band when EVT output O		range low limit	
	Measurement range low limit	to Measurem	ent range high limit	
ЕЧЕсГ	EVT4 conductivity input err	or alarm	0 seconds	
	time when EVT output OFF			
	Setting range: 0 to 10000 se	econds or minu	utes	
MKZNH	EVT4 cycle variable range		50.0%	
500	Setting range: 1.0 to 100.0%	0	1	
EENTY	EVT4 cycle extended time		0 seconds	
	Setting range: 0 to 300 seco			
EY_L	EVT4 High/Low limits independent lower side	Conductivity	input: nent range low limit	
000	value	Temperature	U	
	Conductivity input: Measure			
	Measure	ement range h	igh limit	
	Temperature input: 0.0 to 10			
EH_H	EVT4 High/Low limits	Conductivity		
000	independent upper side value	Measurem Temperature	nent range low limit	
	Conductivity input: Measure			
		ement range h		
	Temperature input: 0.0 to 100.0°C			
ЕЧ_НУ	EVT4 hysteresis		input: 0.01 mS/cm	
<u> </u>		Temperature		
	Conductivity input: 0.01 to 20		ment range high limit	
	Temperature input: 0.1 to 10.0℃			

13.13 Basic Function Group

Character	Setting Item, Setting	Range	Factory Default	Data
Lock	Set value lock		Unlock	
	: Unlock			
	Lack I : Lock 1			
	<i>しゅこドモ</i> : Lock 2			
	<i>しゅこ</i> ドヨ : Lock 3			
_M5L	Communication protocol		Shinko protocol	
NoML	NaML : Shinko protoc	col		
	Mad 🖲 : MODBUS AS	CII mode		
	MadR : MODBUS RT	U mode		
e MNo 🗌	Instrument number		0	
	Setting range: 0 to 95			
_ M5P	Communication speed		9600 bps	
56	<i>□□□□∃5</i> : 9600 bps			
	<i>□□□ /∃근</i> : 19200 bps			
	∃ <i>⊟</i>			
EMFF	Data bit/Parity		7 bits/Even	
7EVN	<i>BNaN</i> □: 8 bits/No pari			
	TN=N: 7 bits/No pari	ty		
	<i>8E⊭N</i> ⊡ : 8 bits/Even			
	<i>∃E⊬N</i> □: 7 bits/Even			
	<i>Bodd</i> : 8 bits/Odd			
	ੀਠਰੋਰ : 7 bits/Odd			
<u>_MhF</u>	Stop bit		1 bit	
	: 1 bit			
	<i>c</i> ': 2 bits			
FRos I	Transmission output 1 ty	ре	Conductivity	
Ec			transmission	
	E = Conductivity tra			
	「EMPIII: Temperature tr パビゴロロ: EVT1 MV trans			
	[M] = [EVI1 WV trans	sinission		
	$\begin{array}{c} \mathcal{W} & \mathcal{Z} \\ \mathcal{W} & \mathcal{W} \\ \mathcal{W} & $			
	Mr 4 EVT4 MV transmission			
FRLHI	Transmission output 1		ity transmission:	
2000	high limit		rement range high limit	
			ire transmission:100.0℃	
		MV transmission:100.0%		
	Conductivity transmission: Transmission output 1 low limit to			
	Measurement range high limit			
	Temperature transmission: Transmission output 1 low limit to			
	100.0℃ MV transmission: Transmission output 1 low limit to 100.0%			
	IVIV transmission: Transm	ission outpu	it i low limit to 100.0%	

Character	Setting Item, Setting Range	Factory Default	Data
	Transmission output 1	Conductivity transmission:	Data
	low limit	Measurement range low limit	
		Temperature transmission: 0.0°C	
		MV transmission: 0.0%	
	Conductivity transmission:	Measurement range low limit to	
		Transmission output 1 high limit	
	Temperature transmission:	0.0°C to Transmission output 1	
		high limit	
		Transmission output 1 high limit	
[Roh2	Transmission output 2 typ		
ſEMP⊡	E = Conductivity tr	ansmission	
	FEMP : Temperature tr	ansmission	
	MUCE : EVT2 MV trans	smission	
	MI/ ∃ : EVT3 MV trans	SMISSION	
	MICH EVT4 MV trans		
FRLH2	Transmission output 2	Conductivity transmission:	
🗆 IOQO	high limit	Measurement range high limit Temperature transmission:100.0°C	
		MV transmission:100.0%	
	Conductivity transmission:	Transmission output 2 low limit to	
		Measurement range high limit	
	Temperature transmission:	Transmission output 2 low limit to	
		100.0℃	
	MV transmission: Transmis	sion output 2 low limit to 100.0%	
FRLLZ	Transmission output 2	Conductivity transmission:	
<i>00</i>	low limit	Measurement range low limit	
		Temperature transmission: 0.0℃	
	MV transmission: 0.0% Conductivity transmission: Measurement range low limit to Transmission output 2 high limit Temperature transmission: 0.0°C to Transmission output 2		
	MV transmission: 0.0% to 1	high limit Transmission output 2 high limit	
TRES 1	Transmission output 1 sta		
5EFH	when calibrating		
	BEFH : Last value HOL	D	
	<i>「「E「H</i> II: Set value HOLD)	
	Pt H Heasured value		
TRHE I	Transmission output 1	Conductivity transmission:	
000	value HOLD when	Measurement range low limit	
	calibrating	Temperature transmission: 0.0°C	
		MV transmission: 0.0%	
		nductivity transmission: Measurement range low limit to	
	Measurement range high limit		
	MV transmission: 0.0 to 100	transmission: 0.0 to 100.0°C	
FRES2	Transmission output 2 sta		
	when calibrating		
bEFH⊡	EFH: Last value HOL	D	
	Set value HOLD)	
	PL'H : Measured value		
			1

Character	Setting Item, Setting Range	Fac	tory Default	Data
TR4E2	Transmission output 2	Conductivity	y transmission:	
0.0	value HOLD when		ment range low limit	
	calibrating		e transmission: 0.0℃	
		MV transmi		
	Conductivity transmission: M		range low limit to range high limit	
	Temperature transmission: 0.		range nigh innit	
	MV transmission: 0.0 to 100.0			
ыкцг	Backlight selection		All are backlit.	
RLL	RLL : All are backlit.	l		
	Econductivity Dis	play is backli	it.	
	<i>ГЕМР</i> ⊡ : Temperature Dis			
	$\exists c \equiv c : Action indicators$			
	$E = \sum MP$: Conductivity Displa	ay + Temperatu	ire Display are backlit.	
	EcRell : Conductivity Disp	lay + Action i	ndicators are bachlit.	
	TMPRc : Temperature Disp	olay + Action i		
col R	Conductivity color		Red	
REd	GRN : Green			
	<i>REd</i> : Red			
	<i>₽₽</i> ⊑ C C C C C C C C C C C C C C C C C C C			
cLP	ECGR : Conductivity col			
	Conductivity color reference value	high limit	asurement range	
	Setting range: 0.00 to Measu	Ů	e high limit	
cLRG	Conductivity color range	inement rung	0.10 mS/cm	
0.0	Setting range: 0.10 to Measu	irement rang		
dPF M	Backlight time	J	0 minutes	
	Setting range: 0 to 99 minute	es		
6ER4L	Bar graph indication		No indication	
	: No indication			
	$\int R a \int f$: Transmission ou	utput 1		
	<i>โRอโ อี</i> : Transmission ou	utput 2		
I NERR	EVT output when input erro	rs occur	Disabled	
oFF	oFF : Disabled			
		r		
oFdP	Temperature Display when	no	Unlit	
oFF	temperature compensation			
	<i>□FF</i> : Unlit			
	トレージョン Reference temp			
ML	Pl' Measured value		Second(a)	
M_4 4Ec	Conductivity input error ala time unit	[]]]	Second(s)	
	らっていた。 うちょうして、Second(s)	l		
	MINE: Minute(s)			

13.14 Error Code List

If the following errors occur, corresponding error codes will be flashing in the Temperature Display.

Error Code	Error Type	Error Contents	Description	Occur- rence
ERRO I	Fail	Temperature sensor	Temperature sensor lead	
	1 GII	burnout	wire is burnt out.	
ERROZ	Fail	Temperature sensor	Temperature sensor lead	When
		short-circuited	wire is short-circuited.	measuring
ERROB	Error	Outside temperature	Measured temperature has	or
		compensation range	exceeded 110.0℃.	calibrating
ERROH	Error	Outside temperature	Measured temperature is]
		compensation range	less than 0.0℃.	

***** Inquiries *****

For any inquiries about this unit, please contact our agency or the vendor where you purchased the unit after checking the following.

[Example]			
• Model	AER-102-ECH		
• Serial number	No. 195F05000		

In addition to the above, please let us know the details of the malfunction, or discrepancy, and the operating conditions.

No.AER11ECE8 2023.09