
Plug-in Type Digital Indicating Conductivity Meter WIL-102-ECH (High Concentration)

Instruction Manual

Preface

Thank you for purchasing our WIL-102-ECH (High Concentration), Plug-in Type Digital Indicating Conductivity Meter.

This manual contains instructions for the mounting, functions, operations and notes when operating the WIL-102-ECH. To ensure safe and correct use, thoroughly read and understand this manual before using this instrument. To prevent accidents arising from the misuse of this instrument, please ensure the operator receives this manual.

Indication	4		1	2	Ē	Ч	มา	5	7	8	9	Ľ	F
Number, ℃/°F	-1	0	1	2	3	4	5	6	7	8	9	°C	°F
Indication	R	Ь	Ē	đ	E	F	5	Н	1	L'	F	Ľ	ā
Alphabet	А	В	С	D	Е	F	G	Н	Ι	J	К	L	М
Indication	n	ø	P	9	<i>_</i>	5	1	Ш	Н	ū	U	Ч	111
Alphabet	Ν	0	Ρ	Q	R	S	Т	U	V	W	Х	Y	Ζ

Characters Used in This Manual

⚠ Caution

- This instrument should be used in accordance with the specifications described in the manual. If it is not used according to the specifications, it may malfunction or cause a fire.
- Be sure to follow all of the warnings, cautions and notices. If they are not observed, serious injury or malfunction may occur.
- The contents of this instruction manual are subject to change without notice.
- Care has been taken to ensure that the contents of this instruction manual are correct, but if there are any doubts, mistakes or questions, please inform our sales department.
- This instrument is designed to be installed on a DIN rail within a control panel. If it is not, measures must be taken to ensure that the operator cannot touch power terminals or other high voltage sections.
- Any unauthorized transfer or copying of this document, in part or in whole, is prohibited.
- Shinko Technos CO., LTD. is not liable for any damage or secondary damage(s) incurred as a result of using this product, including any indirect damage.

Safety Precautions (Be sure to read these precautions before using our products.)

The safety precautions are classified into 2 categories: "Warning" and "Caution". Depending on the circumstances, procedures indicated by \triangle Caution may result in serious consequences, so be sure to follow the directions for usage.

Procedures which may lead to dangerous conditions and cause death or serious injury, if not carried out properly.

Procedures which may lead to dangerous conditions and cause superficial to medium injury or physical damage or may degrade or damage the product, if not carried out properly.

🛛 Warning

- To prevent an electrical shock or fire, only Shinko or other qualified service personnel may handle the inner assembly.
- To prevent an electrical shock, fire or damage to the instrument, parts replacement may only be undertaken by Shinko or other qualified service personnel.

A SAFETY PRECAUTIONS

- To ensure safe and correct use, thoroughly read and understand this manual before using this instrument.
- This instrument is intended to be used for measuring equipment. Verify correct usage after purpose-of-use consultation with our agency or main office. (Never use this instrument for medical purposes with which human lives are involved.)
- External protection devices such as protective equipment against excessive temperature rise, etc. must be installed, as malfunction of this product could result in serious damage to the system or injury to personnel. Proper periodic maintenance is also required.
- This instrument must be used under the conditions and environment described in this manual. Shinko Technos Co., Ltd. does not accept liability for any injury, loss of life or damage occurring due to the instrument being used under conditions not otherwise stated in this manual.

1 Caution with Respect to Export Trade Control Ordinance

To avoid this instrument from being used as a component in, or as being utilized in the manufacture of weapons of mass destruction (i.e. military applications, military equipment, etc.), please investigate the end users and the final use of this instrument. In the case of resale, ensure that this instrument is not illegally exported.

PRECAUTIONS

1. Installation Precautions

1 Caution

This instrument is intended to be used under the following environmental conditions (IEC61010-1): • Overvoltage category II, Pollution degree 2

Ensure the mounting location corresponds to the following conditions:

- A minimum of dust, and an absence of corrosive gases
- No flammable, explosive gases
- No mechanical vibrations or shocks
- No exposure to direct sunlight, an ambient temperature of 0 to 50 $^\circ C$ (32 to 122 $^\circ F$) that does not change rapidly, and no icing
- An ambient non-condensing humidity of 35 to 85 %RH
- No large capacity electromagnetic switches or cables through which large current is flowing
- No water, oil, chemicals or the vapors of these substances can come into direct contact with the unit
- If the WIL-102-ECH is installed within a control panel, the ambient temperature of the unit not the ambient temperature of the control panel must be kept under 50°C. Otherwise the life of electronic parts (especially electrolytic capacitors) of the unit will be shortened.

Note: Do not install this instrument on or near flammable material even though the case of this instrument is made of flame-resistant resin.

2. Wiring Precautions

Caution

- Do not leave wire remnants in the instrument, as they could cause a fire and/or a malfunction.
- Use a solderless terminal with an insulation sleeve in which the M3 screw fits when wiring the WIL-102-ECH.
- Tighten the terminal screw using the specified torque. If excessive force is applied to the screw when tightening, the terminal screw may be damaged.
- This instrument does not have a built-in power switch, circuit breaker and fuse. It is necessary to install a power switch, circuit breaker and fuse near the instrument. (Recommended fuse: Time-lag fuse, rated voltage 250 V AC, rated current 2 A)
- For a 24 V AC/DC power source, do not confuse polarity when using direct current (DC).
- Do not apply a commercial power source to the sensor which is connected to the input terminal nor allow the power source to come into contact with the sensor.
- Use the 4-electrode Conductivity Sensor in accordance with the sensor input specifications of the WIL-102-ECH.
- Keep the input wires and power lines separate.

Note about the 4-Electrode Conductivity Sensor Cable

- The 4-electrode Conductivity Sensor cable is a highly-insulated (electrical) cable. Please handle it with utmost care as follows.
- Do not allow terminals and socket of the 4-electrode Conductivity Sensor cable to come in contact with moisture or oil of any kind. Likewise, ensure fingers are clean, otherwise the insulation will deteriorate, resulting in unstable indication.

Be sure to keep the cable dry and clean at all times.

- If the cable is stained, clean it with alcohol, and dry it completely.
- For calibration or electrode checking/replacement, the 4-electrode Conductivity Sensor cable should be wired with sufficient length.
- Keep the 4-electrode Conductivity Sensor cable and junction cable away from electrical devices, such as motors or their power lines from which inductive interference emanates.

Connection

The 4-electrode Conductivity Sensor cable has the following terminals.

Code	Terminal
1	Conductivity sensor terminal 1
2	Conductivity sensor terminal 2
3	Conductivity sensor terminal 3
4	Conductivity sensor terminal 4
A, B (T, T)	Temperature compensation sensor terminals [Pt100 (2-wire), Pt1000] 5-6
A, B, B	Temperature compensation sensor terminals [Pt100 (3-wire)] 5-6-7
E	Shield wire terminal 8

For the electrode with no temperature compensation, A, B (T, T) or A, B, B cables are not available. E cables are available depending on the sensor type.

During operation, the Conductivity/Temperature Display may become abnormal or unstable due to inductive interference or noise. In this case, try [Grounding of shield wire terminal (E) (P.77)].

3. Operation and Maintenance Precautions

1 Caution

- Do not touch live terminals. This may cause an electrical shock or problems in operation.
- Turn the power supply to the instrument OFF when retightening the terminal or cleaning. Working on or touching the terminal with the power switched ON may result in severe injury or death due to electrical shock.
- Use a soft, dry cloth when cleaning the instrument. (Alcohol based substances may tarnish or deface the unit.)
- As the display section is vulnerable, be careful not to put pressure on, scratch or strike it with a hard object.

Contents

1. Model	7
1.1 Model	
1.2 How to Read the Model Label	7
2. Names and Functions of Instrument	8
3. Mounting to the Control Panel	9
3.1 Site Selection	
3.2 External Dimensions (Scale: mm)	9
3.3 Mounting	9
4. Removal	11
5. Wiring	12
5.1 Lead Wire Solderless Terminal	
5.2 Terminal Arrangement	
5.3 Wire the Communication Line.	
6. Outline of Key Operation and Setting Groups	16
6.1 Outline of Key Operation	16
6.2 Setting Groups	16
7. Key Operation Flowchart	18
8. Setup	20
8.1 Turn the Power Supply ON	
8.2 Conductivity Input Group	
8.3 Temperature Input Group	
8.4 Basic Function Group	
9. Calibration	39
9.1 Conductivity Calibration Mode	
9.2 Temperature Calibration Mode	41
9.3 Transmission Output 1 Adjustment Mode	
9.4 Transmission Output 2 Adjustment Mode	
10. Measurement	
10.1 Starting Measurement	
10.2 A Output	
10.3 Conductivity Input Error Alarm	
10.4 Error Output	
10.5 Fail Output 10.6 Error Code during Measurement	
10.7 Transmission Output 1 and 2	
11. Communication	
11.1 System Configuration Example	
11.2 Setting Method of the Conductivity Meter	
11.3 Communication Procedure	
11.4 Shinko Protocol	
11.4.1 Transmission Mode	
11.4.2 Command Configuration	
11.4.3 Checksum Calculation	
11.5 MODBUS Protocol	
11.5.1 Transmission Mode 11.5.2 Data Communication Interval	
11.5.3 Message Configuration	
11.5.4 Message Example	
11.6 Communication Command Table	
11.6.1 Notes about Setting/Reading Command	
11.6.2 Setting/Reading Command	
11.6.3 Read Only Command	62

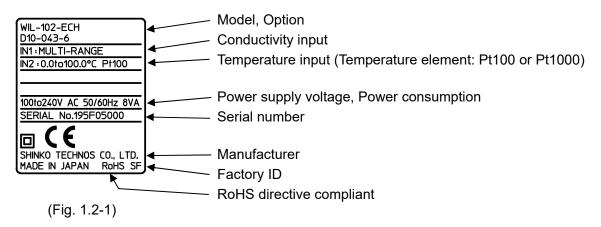
11.7 Conductivity & Temperature Calibrations, Transmission Output 1 & 2 Adjustments	64
via Communication Command	64
11.7.1 Conductivity Calibration	64
11.7.2 Temperature Calibration	65
11.7.3 Transmission Output 1 Adjustment	65
11.7.4 Transmission Output 2 Adjustment	66
11.8 Notes on Programming Monitoring Software	67
11.8.1 How to Speed up the Scan Time	67
11.8.2 How to Read the Set Value Changes Made by Front Keypad Operation	67
11.8.3 Note when Sending All Set Values Simultaneously	67
12. Specifications	68
12.1 Standard Specifications	68
12.2 Optional Specifications	
13. Troubleshooting	77
13.1 Indication	77
13.2 Key Operation	
13.3 Communication	
14. Temperature Compensation Method	79
14.1 Temperature Compensation Based on the Temperature Characteristics of NaCI	79
14.2 How to Input Temperature Coefficient	
15. Character Tables	81

1. Model

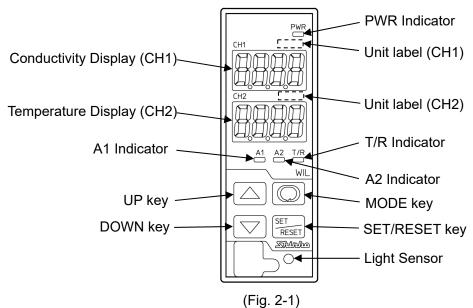
1.1 Model

WIL-10	2	-EC	Н		, 🗆 🗆	
Input Points	2					2 points
						4-electrode Conductivity Sensor
Innut		EC				(Temperature element: Pt100) (*1)
Input		EC				4-electrode Conductivity Sensor
						(Temperature element: Pt1000) (*1)
Concentration H				High concentration		
Dower Supply					100 to 240 V AC (standard)	
Power Supply	/ 00	lage		1		24 V AC/DC (*2)
				EVT	A output (A11, A12, A21, A22)	
Option			TA	Transmission output 1 (*3)		
		TA2	Transmission output 1, Transmission output 2			

(*1) This input temperature specification was specified at the time of ordering.


(*2) Power supply voltage 100 to 240 V AC is standard.

When ordering 24 V AC/DC, enter "1" in Power supply voltage after 'ECH'.


(*3) If TA option is ordered, the EVT option (A1 output only) will be added.

1.2 How to Read the Model Label

The model label is attached to the left side of the case.

2. Names and Functions of Instrument

Displays

Conductivity Display Conductivity, or characters in setting mode are indicated in red.		
(CH1)	Indications differ depending on the selections in [Display selection (p.34)].	
Temperature Display Temperature, or values in setting mode are indicated in red.		
(CH2)	Indications differ depending on the selections in [Display selection (p.34)].	

Unit label (CH1)	Attach the user's unit of Conductivity Display (CH1) from the included unit			
	labels if necessary.			
Unit label (CH2)	Attach the user's unit of Temperature Display (CH2) from the included unit labels if necessary.			

Action Indicators

PWR Indicator	When power supply to the instrument is turned ON, the yellow LED lights.	
A1 Indicator	When A1 output (Contact output 1) is ON, the red LED lights.	
	(Unlit if TA2 option is ordered.)	
A2 Indicator	When A2 output (Contact output 2) is ON, the yellow LED lights.	
	(Unlit if TA option or TA2 option is ordered.)	
T/R Indicator	The yellow LED lights during Serial communication TX output (transmitting).	

Key

UP key	Increases the numeric value.		
DOWN key	ey Decreases the numeric value.		
I MODE key	Selects a setting group.		
SET/RESET key	Switches the setting modes, and registers the set value.		

Light Sensor	Automatically measures and controls brightness of the Conductivity Display,
	Temperature Display and Action indicators.

▲ Notice

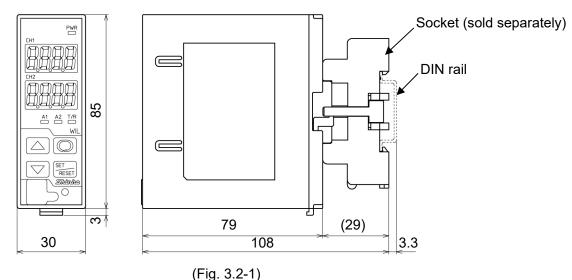
When setting the specifications and functions of this instrument, connect mains power cable to terminals 13 and 14 first, then set them referring from "6. Outline of Key Operation and Setting Groups" to "8. Setup (pp.16 to 38)" before performing "3. Mounting to the Control Panel (p.9)" and "5. Wiring (p.12)".

3. Mounting to the Control Panel

3.1 Site Selection

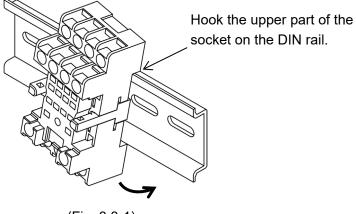
▲ Caution

Use within the following temperature and humidity ranges.


Temperature: 0 to 50° C (32 to 122° F) (No icing), Humidity: 35 to 85 %RH (Non-condensing) If the WIL-102-ECH is installed within a control panel, the ambient temperature of the unit – not the ambient temperature of the control panel – must be kept under 50° C. Otherwise the life of electronic parts (especially electrolytic capacitors) of the unit will be shortened.

This instrument is intended to be used under the following environmental conditions (IEC61010-1): Overvoltage category II, Pollution degree 2

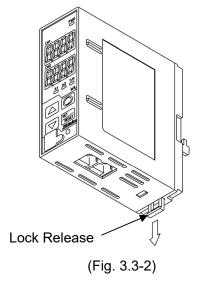
Ensure the mounting location corresponds to the following conditions:


- A minimum of dust, and an absence of corrosive gases
- No flammable, explosive gases
- No mechanical vibrations or shocks
- No exposure to direct sunlight, an ambient temperature of 0 to 50°℃ (32 to 122°F) that does not change rapidly
- An ambient non-condensing humidity of 35 to 85 %RH
- No large capacity electromagnetic switches or cables through which large current is flowing
- No water, oil, chemicals or the vapors of these substances can come into direct contact with the unit

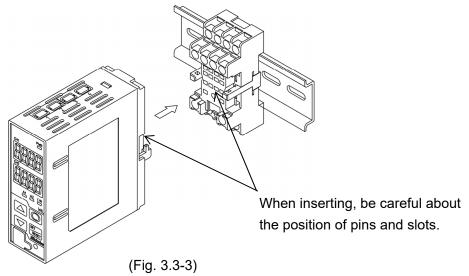
3.2 External Dimensions (Scale: mm)

3.3 Mounting

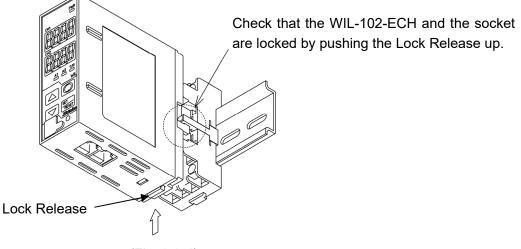
(1) Hook the upper part of the socket on the DIN rail, and mount it (A clicking sound is heard).



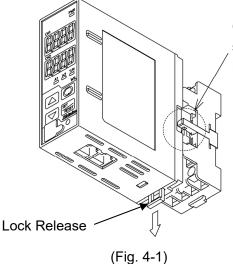
(Fig. 3.3-1)


\land Caution

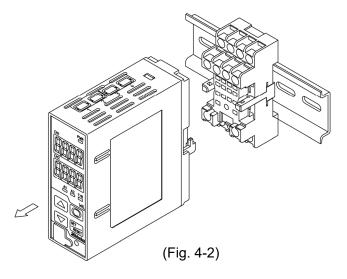
Before inserting the WIL-102-ECH into the socket, wire the unit. Refer to Section "5. Wiring" (p.12).


(2) Check that the Lock Release has been lowered.

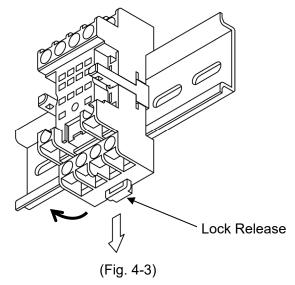
(3) Insert the WIL-102-ECH into the socket.


(4) Fix the WIL-102-ECH and the socket by pushing the Lock Release up.

(Fig. 3.3-4)


4. Removal

- (1) Turn the power supply to the unit OFF.
- (2) Pull the Lock Release down, and release the WIL-102-ECH from the socket.



Check that the WIL-102-ECH and the socket are unlocked by pulling the Lock Release down.

(3) Separate the WIL-102-ECH from the socket.

(4) Remove the socket from the DIN rail by pulling the socket Lock Release (at the bottom of the socket) down.

5. Wiring

Warning

Turn the power supply to the instrument off before wiring or checking. Working on or touching the terminal with the power switched on may result in severe injury or death due to electrical shock.

1 Caution

- Do not leave wire remnants in the instrument, as they could cause a fire or a malfunction.
- Use a solderless terminal with an insulation sleeve in which the M3 screw fits when wiring the unit.
- Tighten the terminal screw using the specified torque. If excessive force is applied to the screw when tightening, the terminal screw may be damaged.
- This instrument does not have a built-in power switch, circuit breaker and fuse. It is necessary to install a power switch, circuit breaker and fuse near the instrument. (Recommended fuse: Time-lag fuse, rated voltage 250 V AC, rated current 2 A)
- For a 24 V AC/DC power source, do not confuse polarity when using direct current (DC).
- Do not apply a commercial power source to the sensor which is connected to the input terminal nor allow the power source to come into contact with the sensor.
- Use the 4-electrode Conductivity Sensor in accordance with the sensor input specifications of this unit.
- Keep the input wires and power lines separate.

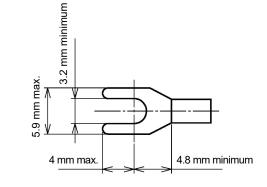
Note about the 4-Electrode Conductivity Sensor Cable

- The 4-electrode Conductivity Sensor cable is a highly-insulated (electrical) cable. Please handle it with utmost care as follows.
- Do not allow terminals and socket of the 4-electrode Conductivity Sensor cable to come in contact with moisture or oil of any kind. Likewise, ensure fingers are clean, otherwise the insulation will deteriorate, resulting in unstable indication.
- Be sure to keep the cable dry and clean at all times.
- If the cable is stained, clean it with alcohol, and dry it completely.
- For calibration or electrode checking/replacement, the 4-electrode Conductivity Sensor cable should be wired with sufficient length.
- Keep the 4-electrode Conductivity Sensor cable and junction cable away from electrical devices, such as motors or their power lines from which inductive interference emanates.

Connection

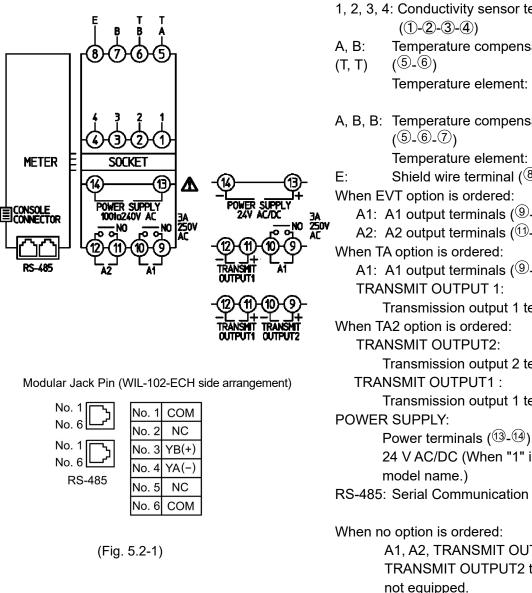
The 4-electrode Conductivity Sensor cable has the following terminals.

Code	Terminal
1	Conductivity sensor terminal 1
2	Conductivity sensor terminal 2
3	Conductivity sensor terminal 3
4	Conductivity sensor terminal 4
A, B (T, T)	Temperature compensation sensor terminals [Pt100 (2-wire), Pt1000] 5-6
A, B, B	Temperature compensation sensor terminals [Pt100 (3-wire)] 5-6-7
E	Shield wire terminal 8


For the electrode with No Temperature Compensation, A, B (T, T) or A, B, B cables are not available. E cables are available depending on the sensor type.

During operation, the Conductivity/Temperature Display may become abnormal or unstable due to inductive interference or noise. In this case, try [Grounding of shield wire terminal (E) (P.77)].

5.1 Lead Wire Solderless Terminal


Use a solderless terminal with an insulation sleeve in which an M3 screw fits as follows. The tightening torque should be 0.63 N·m.

Solderless Terminal	Manufacturer	Model
Y-type	Nichifu Terminal Industries CO., LTD.	TMEV1.25Y-3S

5.2 Terminal Arrangement

- 1, 2, 3, 4: Conductivity sensor terminals 1, 2, 3, 4
- Temperature compensation sensor terminals

Temperature element: Pt100 (2-wire type), Pt1000

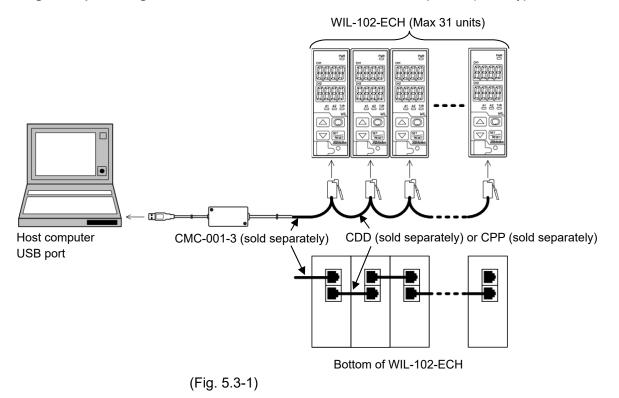
- A, B, B: Temperature compensation sensor terminals
 - Temperature element: Pt100 (3-wire type)
- Shield wire terminal $(^{(8)})$
 - A1: A1 output terminals (9-10)
 - A2: A2 output terminals (1)-12)
 - A1: A1 output terminals (9-10)

Transmission output 1 terminals (11-12)

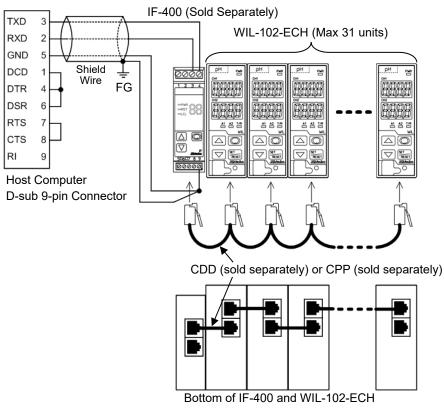
Transmission output 2 terminals (9-0)

Transmission output 1 terminals (1-2)

24 V AC/DC (When "1" is added after


RS-485: Serial Communication modular jack

A1, A2, TRANSMIT OUTPUT1, TRANSMIT OUTPUT2 terminals are


5.3 Wire the Communication Line.

Connect to the modular jack at the bottom of the instrument, using CDD (sold separately) or CPP (sold separately).

• Wiring Example Using a USB Communication Cable CMC-001-3 (sold separately)

Wiring Example Using a Communication Converter IF-400

(Fig. 5.3-2)

Shield Wire

Be sure to ground only one end of the shield wire so that current cannot flow to the shield wire. If both ends of the shield wire are grounded, the circuit will be closed, resulting in a ground loop. This may cause noise.

Be sure to ground the FG.

Recommended cable: OTSC-VB 2PX0.5SQ (made by Onamba Co., Ltd.) or equivalent (Use a twisted pair cable.)

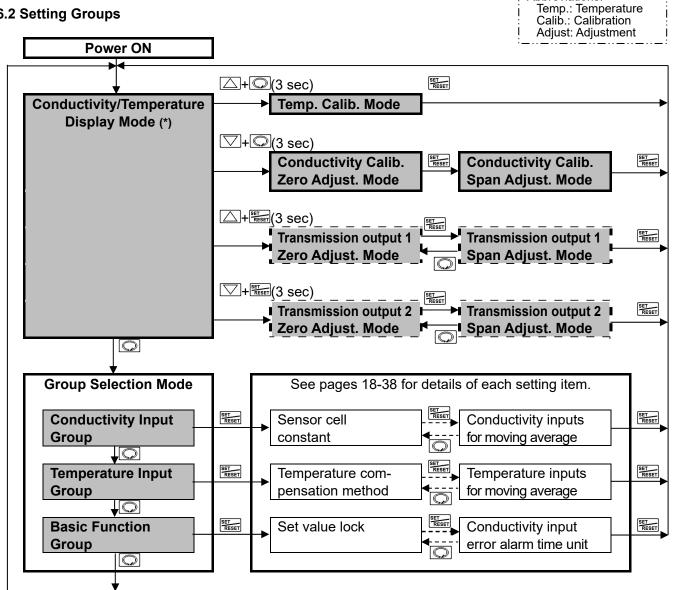
Terminator (Terminal Resistor)

The terminator is mounted at the end of the wire when connecting multiple peripheral devices to a personal computer. The terminator prevents signal reflection and disturbance.

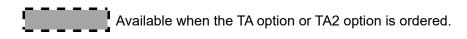
Do not connect a terminator to the communication line because each WIL-102-ECH has built-in pull-up and pull-down resistors.

Communication converter IF-400 (sold separately) has a built-in terminal resistor.

6. Outline of Key Operation and Setting Groups


6.1 Outline of Key Operation

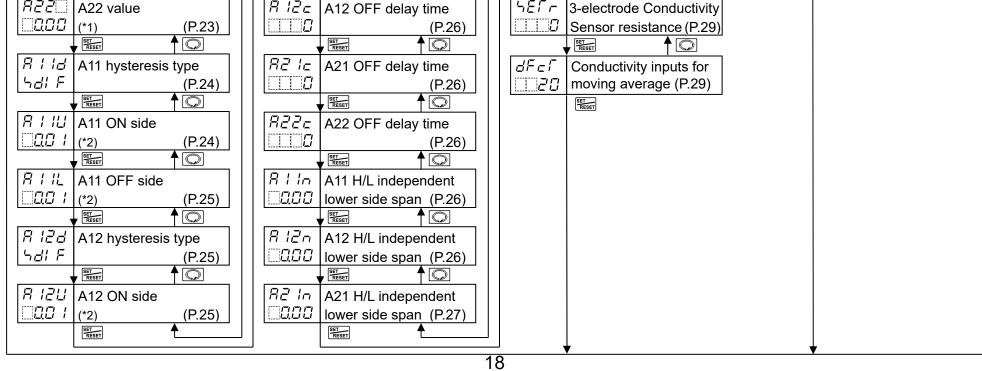
Setting items are divided into groups, and group selection has to be made with keypads. Press the 🔘 key in Conductivity/Temperature Display Mode. The unit enters Group Selection mode.


Abbreviations:

Select a group with the \square key, and press the \blacksquare key. The unit enters each setting item. To set each item, use the \bigtriangleup or \bigtriangledown key, and register the set value with the \blacksquare key.

6.2 Setting Groups

(*) Indicates the item selected in [Display selection (p.34)] in Conductivity/Temperature Display Mode.



Key Operation

- 🖂 + 🔘 (3 sec): Press and hold the 🖂 key and 😡 key (in that order) together for 3 seconds. The unit will proceed to Conductivity Calibration Zero Adjustment Mode.
- 🖂 + 🚟 (3 sec): Press and hold the 🛆 key and 🗺 key (in that order) together for 3 seconds. The unit enters Transmission Output 1 Zero Adjustment Mode.
- 🖂 + 🚟 (3 sec): Press and hold the 🖂 key and 🚟 key (in that order) together for 3 seconds. The unit enters Transmission Output 2 Zero Adjustment Mode.
- 🔘, 🚟: Press the 🔘 or 🖼 key. The unit will enter the next setting item, illustrated by an arrow.
- First the setting mode appears.
- To revert to Conductivity/Temperature Display Mode, press and hold the 🔘 key for 3 seconds while in any mode.

7. Key Operation Flowchart

. Key Operation	n Flowchart		Abbreviations:
Power ON			Adjust.: Adjustment H/L: High/Low limits
□ UDD Conductivity/Temper- □25D ature Display Mode			
+	→ □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	e Calibration (P.41)	
[∑]+[͡͡͡͡͡͡͡͡͡͡͡͡͡͡͡͡͡͡͡͡͡͡ː [͡͡͡͡͡͡͡͡͡͡͡͡͡	► RdJΞ Conductivity □ΩΩΩ Zero Adjust.		ctivity Calibration
+ RESET (3 sec)	RJE / Transmissio		nission output 1 Adjust. Mode (P.42)
→+ ^{BET} (3 sec)	RJ∃2 Transmissio □ΩΩΩ Zero Adjust.	-	nission output 2 Adjust. Mode (P.43)
F.n.c. / Conductivity Input	\bigcirc		F.∩.cਟ Temperature Input Group
$ \begin{array}{c} \underline{c} \underline{E} \underline{L} \underline{L} \\ \hline \underline{U} \\ U$	用 IZL A12 OFF side □□□□ I (*2) (P.25)	A22 H/L independent	「ここ」 「ここ」 「Temperature compen- 「兄」」 sation method (P.30)
Cell constant	유근 /너 A21 hysteresis type	A11 H/L independent	$\underline{\boldsymbol{\xi}} = \boldsymbol{\sigma} \boldsymbol{\xi}$ Temperature coefficient
		upper side span (P.27)	
Lini 「Measurement unit	RE IL A21 ON side	R IZP A12 H/L independent	
[(P.21)]	$ \square \square \square (*2) \qquad (P.25) $	UDDD upper side span (P.27)	$\Box 250$ temperature (P.30)
▼ SET RESET	▼ SET RESET	▼ SET ↑	
ຕັດຕະບົ Measurement range	R근 IL A21 OFF side	RE IF A21 H/L independent	<i>⊐'P'Ē</i> Decimal point place
(P.21)		upper side span (P.27)	
↓ [™] ↓ © 「ゴ'っと TDS conversion	। ਸਿਟੋਟੋਰ A22 hysteresis type	ਸਟੋਟੋਸ A22 H/L independent	ע דאפיין עש בבהב Pt100 input wire type
$\square \square $		UDDD upper side span (P.27)	$PT \square B$ (P.30)
R I IF A11 type	[무근근님 A22 ON side	<i>톱 : 남</i> A11 hysteresis	<i>⊂∃bL</i> Cable length correction
(P.22)	(P.25)	(P.28)	(P.30)
A A C <thc< th=""> <thc< th=""> <thc< th=""> <thc< th=""></thc<></thc<></thc<></thc<>	<i>₽22L</i> A22 OFF side □00 / (*2) (P.25)	<i>R IZH</i> A12 hysteresis □□□□ <i>I</i> (P.28)	$\Box \Box \exists \Box \exists \Box$ area (P.30)
RZ IF A21 type	$\exists i \mid z $ A11 ON delay time	RE IH A21 hysteresis	$F \mid \Gamma \not\in T$ Temperature input filter
(P.23)	(P.25)	(P.28)	time constant (P.30)
		▼ SET ↑	
R22F A22 type	A12 ON delay time	A22 hysteresis	$dF = \Gamma$ Temperature inputs for
	(P.26)		moving average (P.31)
▼ [™]	R≓ / □ A21 ON delay time	↓ Err A□ output when input	SET RESET
$\square \square (P.23)$	<i>月 </i>	$ \downarrow E = - A \square $ output when input $ = F F \square $ errors occur (P.29)	
SET CO		SET ♠ ♥	
A12 value	유근근 A22 ON delay time	$\left \begin{array}{c} F \\ F \\ \end{array} \right \left \begin{array}{c} C \\ C \\ C \\ C \\ C \\ \end{array} \right $	
		time constant (P.29)	
। • • विद्या value	Image: state	<i>E ∽ □</i> Conductivity input	
	(P.26)	Sensor correction(P.29)	

-2)

About Setting Items

CELL	Sensor cell constant
	(P.20)
Fro I	Transmission output 1
Ec	type (P.32)

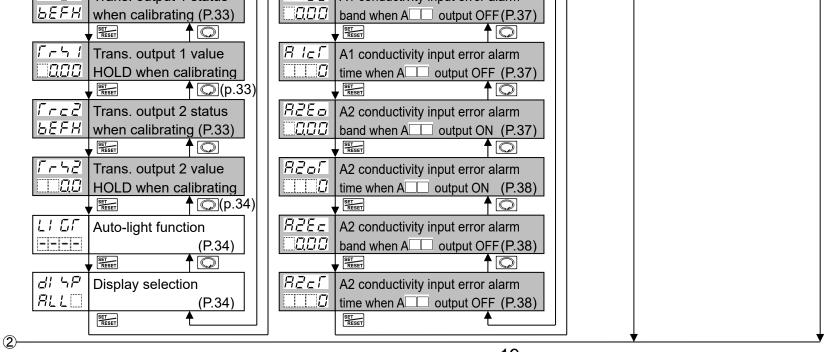
• Upper left: Conductivity Display: Indicates the setting item characters. • Lower left: Temperature Display: Indicates the factory default.

• **Right side**: Indicates the setting item and reference page.

Setting item in shaded section will be displayed only when the corresponding option is ordered.

If the TA option is added, A2 related setting items are not available.

If the TA2 option is added, A1 and A2 related setting items are not available.


(*1): Factory default value is different depending on the selection in [A representation of the selection in [A representation of the selection of the selectio

(*2): Factory default value is different depending on the selection in [A represented to be a selection of the selection of t

About Key Operation

- \square + \square (3 sec): Press and hold the \square , \square keys (in that order) for 3 sec. The unit enters Temperature calibration mode.
- 🖂 + 🖾 (3 sec): Press and hold the 🖂, 💿 keys (in that order) for 3 sec. The unit enters Conductivity calibration zero adjustment mode.
- 🖂 + 🚟 (3 sec): Press and hold the 🛆, 🖼 keys (in that order) for 3 sec. The unit enters Transmission output 1 zero adjustment mode.
- 🖂 + 🖭 (3 sec): Press and hold the 🖂, 📰 keys (in that order) for 3 sec. The unit enters Transmission output 2 zero adjustment mode.
- To revert to Conductivity/Temperature Display Mode, press and hold the 🔘 key for 3 sec while in any mode.

		-
		Abbreviation:
ी – बिडांट Function Group	\bigcirc	Trans: Transmission
とのこと Set value lock	「こうを Indication time 「日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	Conductivity input error $\neg E = \Box$ alarm time unit (P.38)
Communication	<i>□^F d^P</i> Temperature Display when no	
protocol (P.31)	$\Box F F \square$ temperature compensation (P.34)	
בהֹתם Instrument number נובדם (P.31)	$\begin{array}{c c} \hline B & I_{\Phi}F \\ \hline B & I_{\Phi}I \\ \hline \end{array} $ (P.35)	
	B = F A2 output allocation	
<u> </u>	R2 (D.35)	
ェñFに Data bit/Parity 『とどっ (P.31)	Image: Descent of the second	
	A1 output ON (P.35)	
<u> こう</u> 「 Stop bit	$\Box \Box F$ / Output OFF time when	
(P.32)	A1 output ON (P.36)	
Image: Constraint of the second systemTransmission output 1Econd type(P.32)	DecidOutput ON time whenDA2 output ON(P.36)	
Transmmision output 1	QQF2 Output OFF time when	
2000 high limit (P.32)	A2 output ON (P.36)	
Image: Constraint of the second se	B IE A1 conductivity input error $$ alarm Atype(P.36)	
「こっこ」 Transmmision output 2	B2E A2 conductivity input error	
FEAP type (P.32)	alarm A type (P.36)	
「こ日ご Transmmision output 2 「日日日 high limit (P.33)	A1 conductivity input error alarm □ΩΩΩ band when A□□ output ON(P.37)	
Transmmision output 2	A1 conductivity input error alarm	
Iow limit (P.33)	time when A output ON (P.37)	
$\begin{bmatrix} r & r \\ r & r \end{bmatrix}$ Trans. output 1 status	B IE_{-} A1 conductivity input error alarm	

19

8. Setup

Before using this instrument, setup should be performed to suit the conditions of usage:

Setting the Cell constant correction value, Measurement unit, A11, A12, A21 and A22 types,

Temperature compensation method, Communication, $A \Box \Box$ output when input errors occur, etc.

Setup can be conducted in the Conductivity Input Group, Temperature Input Group and Basic Function Group.

If the user's specification is the same as the factory default value of the WIL-102-ECH, or if setup has already been completed, it is not necessary to set up the instrument. Proceed to Section "9. Calibration (p.39)".

8.1 Turn the Power Supply ON.

For approximately 4 seconds after the power is switched ON, the input characters are indicated on the Conductivity Display and Temperature Display. See (Table. 8.1-1). (Table. 8.1-1).

(Table: 0.1-1)			
Display	Character	Mea	asurement Unit
	cond	Conductivity (mS/cm,	μ _{S/cm})
		Conductivity (S/m, mS	5/m)
Conductivity Display	5 <i>E R</i>	Seawater salinity (%)	
	58LF	NaCl salinity (%)	
	Г <i>ач</i> ы	TDS conversion (g/L,	mg/L)
Dioplay	Character	Input Temperature	Selection Item in
Display	Character	Specification (*)	[Pt100 Input Wire Type] (p.30)
	PF::::2	Pt100	<i>F'/</i> □ <i>⊑</i> ' : 2-wire type
Temperature Display	PF[]]3	FLIUU	$F' \Gamma \square \exists$: 3-wire type
	PF 10	Pt1000	

(*) This input temperature specification was specified when ordering.

During this time, all outputs are in OFF status, and LED indicators except the PWR Indicator turn off. After that, measurement starts, indicating the item selected in [Display selection (p.34)]. This status is called Conductivity/Temperature Display Mode.

8.2 Conductivity Input Group

To enter the Conductivity Input Group, follow the procedure below.

- ① F.n.c. / Press the 🔘 key in Conductivity/Temperature Display Mode.
- 2 c E L Press the Rest key.

The unit enters the Conductivity Input Group, and "Sensor cell constant" is indicated.

Character	Setting Item, Function, Setting Range	Factory Default
cELL	Sensor cell constant	1.0/cm
	 Selects sensor cell constant. 	
	 If the Sensor cell constant is changed, Conduvalues and Cell constant correction value will Set the Cell constant correction value again, a and Span adjustment values. Selection item: □□ ↓□ : 1.0/cm □ ↓□ □ : 10.0/cm 	be cleared.
c.aEF 1000	 Cell constant correction value Sets sensor cell constant correction value. □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	1.000 y.

Character	Setting Item, Funct	ion, Setting Range	Factory Default	
Uni F	Measurement unit		Conductivity (mS/cm, μ S/cm)	
conð	Selects the conductivity	unit.	· · · · · · · · · · · · · · · · · · ·	
	-	• ·	uctivity Zero and Span adjustment v	
			vity Zero and Span adjustment valu Conductivity Span adjustment valu	
			ductivity Zero adjustment value.	
		•	6/m) to Seawater salinity (%) or NaCl	
	salinity (%).	,		
		water salinity (%) o	r NaCl salinity (%) to Conductivity (n	nS/cm,
	S/m).			
	 Changing from Sea 	awater salinity (%) f	o NaCl salinity (%).	
	Selection item:			
	<i>⊂⊡า</i> ช : Conductivity	• •		
	ין : Conductivity			
	<i>ゝER</i> □ :Seawater sal			
	ー <u>ーパレデ</u> : NaCl salinity			
	「ゴ〜□ :TDS conversi	ion (g/L, mg/L)		
ñrnú Doon	Measurement range		20.00 mS/cm	
2000	Selects the measurement	•	5	
	-	is changed, Condu	ctivity Zero and Span adjustment va	alues
	will be cleared.	uctivity Zoro and S	oan adjustment values.	
			or cell constant and measurement uni	it
	When sensor cell con			
	(Table 8.2-1)	Stant 1.0/CIII IS Sele		
	Measurement Unit		Measurement Range	
		2000	0.00 to 20.00 mS/cm	
		2000	0.0 to 200.0 mS/cm	
		5000	0.0 to 500.0 mS/cm	
	Conductivity		0 to 500 mS/cm	
	(mS/cm, μ S/cm)	2000	0.000 to 2.000 mS/cm	
		5000	0.000 to 5.000 mS/cm	
		5000	0.00 to 50.00 mS/cm	
		2000	0 to 2000 <i>µ</i> S/cm	
		5000	0 to 5000 μS/cm	
		2.000	0.000 to 2.000 S/m	
		2000	0.00 to 20.00 S/m	
		5000	0.00 to 50.00 S/m	
	Conductivity		0.0 to 50.0 S/m	
	(S/m, mS/m)	2000 5000	0 to 2000 mS/m	
		2000	0.000 to 5.000 S/m	
		5000	0.0 to 200.0 mS/m	
			0.0 to 500.0 mS/m	
		200	0.0 to 20.0 g/L	
	TDS conversion	500	0 to 200 g/L	
	(g/L, mg/L)	2000	0 to 500 g/L	
		5000	0 to 2000 mg/L	
	Segurator colimity (9/)		0 to 5000 mg/L	
	Seawater salinity (%)		0.00 to 4.00%	
	NaCl salinity (%)		0.00 to 20.00%	

	Setting Item, Funct	ion, Setting Rang	e Factory Defa	ult
	When sensor cell cons	stant 10.0/cm is s	elected:	
	(Table 8.2-2) Measurement Unit	Selection Item	Massurament Panga	
			Measurement Range 0.0 to 200.0 mS/cm	
	Conductivity	5000	0.0 to 500.0 mS/cm	
	(mS/cm)	2000	0 to 2000 mS/cm	
		20.00	0.00 to 20.00 S/m	
	Conductivity	50.00	0.00 to 50.00 S/m	
	(S/m, mS/m)	2000	0.0 to 200.0 S/m	
		200	0 to 200 g/L	
	TDS conversion (g/L)	500	0 to 500 g/L	
	(9,-)	2000	0 to 2000 g/L	
	Seawater salinity (%)	<u> </u>	0.00 to 4.00%	
	NaCl salinity (%)	20.00	0.00 to 20.00%	
<i>F</i> 11 1	TDS conversion factor		0.50	
ſdhE ⊡oco	Sets TDS conversion factor	tor	0.50	
<u>050</u>			ion (g/L)] is selected in [Measure	ment unit].
	Setting range: 0.30 to 1.0			inon and.
R F	A11 type		No action	
	• Selects an A11 type.			
		nged, the A11 val	ue defaults to 0.00 or 0.0.	
	Initial Initia Ini			
	$\mathcal{E} \mathcal{E} \mathcal{L}$: Conductivity in			
	E = H: Conductivity in			
	「			
	·		hen the error type is "Error".(Table	8 2-3)] (p 23)
			en the error type is "Fail". (Table 8	
			ts independent action (Fig. 8.2-2)	
	FAHL : Temperature in	nput High/Low limi	ts independent action (Fig. 8.2-2)	(p.23)
	A11 action (Activated b	ased on the indic	cation value.)	
	Conductivity input I	ow limit action,	Conductivity input high limit	
	Temperature input I		Temperature input high limit	action
	If Medium Value is selected hysteresis type]:	ed in [A11	If Medium Value is selected in [A11 hysteresis type]:	
	A11 ON s	ides	A11 ON sides	
		N I		
				— ON
	OFF			— OFF
			\triangle	
		10		0.1
	A11 value If Reference Value is sele		A11 value If Reference Value is selected in [A1	
	A11 value If Reference Value is sele hysteresis type]:		If Reference Value is selected in [A1 hysteresis type]:	1
	If Reference Value is sele		If Reference Value is selected in [A1	1
	If Reference Value is sele hysteresis type]:	cted in [A11	If Reference Value is selected in [A1 hysteresis type]:	1
	If Reference Value is sele hysteresis type]:	cted in [A11	If Reference Value is selected in [A1 hysteresis type]:	1
	If Reference Value is sele hysteresis type]: A11 ON side*	cted in [A11	If Reference Value is selected in [A1 hysteresis type]:	1 de*
	If Reference Value is sele hysteresis type]: A11 ON side*	cted in [A11	If Reference Value is selected in [A1 hysteresis type]: A11 OFF side* A11 ON si	1 de*
	If Reference Value is selechysteresis type]: A11 ON side*	cted in [A11 A11 OFF side*	If Reference Value is selected in [A1 hysteresis type]: A11 OFF side* A11 ON si	1 de* — ON
	If Reference Value is selechysteresis type]: A11 ON side* ON OFF A11	cted in [A11 A11 OFF side*	If Reference Value is selected in [A1 hysteresis type]: A11 OFF side* A11 ON si	1 de* — ON
	If Reference Value is sele hysteresis type]: A11 ON side* ON OFF A11 * Setting Example:	cted in [A11 A11 OFF side*	If Reference Value is selected in [A1 hysteresis type]: A11 OFF side* A11 ON si A11 OFF side* A11 ON si A11 value 8.2-1)	1 de* — ON — OFF
	If Reference Value is sele hysteresis type]: A11 ON side* ON OFF A11 * Setting Example: If [A11 ON side (日 1 1)	cted in [A11 A11 OFF side* A11 OFF side* A A Value (Fig. 4)] is set to 0.00 o	If Reference Value is selected in [A1 hysteresis type]: A11 OFF side* A11 ON si	1 de* — ON — OFF
	If Reference Value is sele hysteresis type]: A11 ON side* ON OFF A11 * Setting Example: If [A11 ON side (日日) at the value set in [A11	cted in [A11 A11 OFF side* ↓ ↓ ↓ value (Fig. ↓)] is set to 0.00 o value (月 / /[])]. ↓ ↓	If Reference Value is selected in [A1 hysteresis type]: A11 OFF side* A11 ON si A11 OFF side* A11 ON si A11 value 8.2-1)	1 de* — ON — OFF

Character	Setting Iter	n, Function, Setting F	Range	Factory Default
		vity input High/Low li ture input High/Low l	-	
	•	A11 hysteresis	A11 hys	
			I.KI	
		T I I	I T	
	0		_╋{	-
		High/Low limits A11 valu	•	h/Low limits
	independent lo	ower side span	indepen	dent upper side span
		(Fig. 8.2-2	2)	
	 Error output, (Table. 8.2-3) 		,	
	Error Type	Error		Description
	Fail	Temperature sensor burnout.		ure sensor lead wire is burnt out.
	Fail	Temperature sensor short-circuited	Temperati short-circi	ure sensor lead wire is uited.
	Error	Outside temperature compensation range	Measured	temperature has exceeded 110.0℃.
	Error	Outside temperature compensation range	Measured	l temperature is less than 0.0℃.
R 12F	A12 type			No action
	• Selects an A12	tvpe.		
·		pe is changed, the A	12 value de	efaults to 0.00 or 0.0.
		on item and action, refe	er to A11 ty	
82 IF	A21 type			No action
	 Selects an A21 Note: If A21 to 	⊢type. γ pe is changed, the A a	21 valuo de	ofaults to 0.00 or 0.0
		on item and action, refe		
822F	A22 type	,		No action
	Selects an A22	2 type.		
	Note: If A22 ty	pe is changed, the A	22 value de	efaults to 0.00 or 0.0.
	 For the selection 	on item and action, refe	, ,	
8 10	A11 value		uctivity inpu	it: 0.00 mS/cm, Temperature input: 0.0℃
	Sets an A11 va Not available it		Ecol (E	rror output) or <i>F兒</i> と (Fail output)
	is selected in [/		'∟' ' <u>∟</u> ' (⊏I	
	• Setting range:			
		put: Measurement rang	ge low limit	to Measurement range high limit (*1)
	Temperature in	put: 0.0 to 100.0℃ (*2)		
8 120	A12 value		uctivity inpu	it: 0.00 mS/cm, Temperature input: 0.0℃
<i>⊡0.00</i>	• Sets an A12 va		oro the e-	m_{0} as these of $A11$ values (= 0.2)
82 1	Indication cond A21 value			me as those of A11 value. (p.23) It: 0.00 mS/cm, Temperature input: 0.0℃
	• Sets an A21 value		ασανική πηρυ	
000			are the sa	me as those of A11 value. (p.23)
822	A22 value	- · · ·		It: 0.00 mS/cm, Temperature input: 0.0° C
0.00	Sets an A22 value			
! /			e are the sa	me as those of A11 value. (p.23)
(h 4)		nal point place follow the n		

(*1) The measurement unit and decimal point place follow the measurement range.

(*2) The placement of the decimal point does not follow the selection. It is fixed.

Character	Setting Ite	m, Function	, Setting Range	Factory Default
R I Id	A11 hysteresis t			Reference Value
Sdi F			۔ Nedium or Reference Va	
				utput) or <i>F帠/ ヒ</i> (Fail output)
	is selected in [A1	•		· · · ·
	Selection item:			
	<i>こぱド</i> : Medium			
				des in relation to A11 value.
		N side needs	to be set.	
	<i>הםו F</i> : Referen			
			s for ON and OFF sides	
8		N and OFF s	des need to be set indivi	Conductivity input: 0.01 mS/cm
	A11 ON side			Temperature input: 1.0°C
001	Sets the span of	A11 ON side	L	
				sis type], the span of ON/OFF
	side will be the s			sis type], the span of Old/Ol 1
			ection) Ecol (Error o	utput) or <i>ド吊に</i> (Fail output)
	is selected in [A	•		
	-		ng on the selections of A	11 type and measurement range.
			Ig on the selections of A	Th type and measurement range.
	(Table 8.2-4)			
	A Type	Me	asurement Range	Setting Range
			0.00 to 20.00 mS/cm	0.00 to 2.00 mS/cm
			0.0 to 200.0 mS/cm	0.0 to 20.0 mS/cm
			0.0 to 500.0 mS/cm	0.0 to 50.0 mS/cm
			0 to 500 mS/cm 0.000 to 2.000 mS/cm	0 to 50 mS/cm 0.000 to 0.200 mS/cm
			0.000 to 2.000 mS/cm	
			0.00 to 50.00 mS/cm	0.00 to 5.00 mS/cm
			0 to 2000 <i>µ</i> S/cm	0 to 200 <i>µ</i> S/cm
			0 to 5000 µS/cm	0 to 500 <i>µ</i> S/cm
			0.000 to 2.000 S/m	0.000 to 0.200 S/m
		Cell	0.00 to 20.00 S/m	0.00 to 2.00 S/m
		constant	0.00 to 50.00 S/m	0.00 to 5.00 S/m
		1.0/cm	0.0 to 50.0 S/m	0.0 to 5.0 S/m
			0 to 2000 mS/m	0 to 200 mS/m
			0.000 to 5.000 S/m	0.000 to 0.500 S/m
	Conductivity		0.0 to 200.0 mS/m	0.0 to 20.0 mS/m
	input		0.0 to 500.0 mS/m	0.0 to 50.0 mS/m
			0.0 to 20.0 g/L	0.0 to 2.0 g/L
			0 to 200 g/L	0 to 20 g/L
			0 to 500 g/L	0 to 50 g/L
			0 to 2000 mg/L	0 to 200 mg/L
			0 to 5000 mg/L	0 to 500 mg/L
			0.0 to 200.0 mS/cm	0.0 to 20.0 mS/cm
			0.0 to 500.0 mS/cm	0.0 to 50.0 mS/cm
			0 to 2000 mS/cm	0 to 200 mS/cm
		Cell	0.00 to 20.00 S/m	0.00 to 2.00 S/m
		constant	0.00 to 50.00 S/m	0.00 to 5.00 S/m
		10.0/cm	0.0 to 200.0 S/m	0.0 to 20.0 S/m
			0 to 200 g/L	0 to 20 g/L
			0 to 500 g/L	0 to 50 g/L
			0 to 2000 g/L	0 to 200 g/L
			salinity 0.00 to 4.00%	0.00 to 0.40%
			hity 0.00 to 20.00%	0.00 to 2.00%
	Temperature input	t 0.0 to 100	. 0 °C	0.0 to 10.0℃

Character	Setting Item, Function, Setting Range	Factory Default
	A11 OFF side	Conductivity input: 0.01 mS/cm
		Temperature input: 1.0℃
	• Sets the span of A11 OFF side.	
	• Not available if $\Box \Box' \vdash$ (Medium Value) is selected in [A11 hysteresis type]
	• Not available if $\Box \Box \Box \Box \Box$ (No action), $\Xi \neg \Box \overline{\Box}$ (Error out	
	is selected in [A11 type].	
	• Setting range differs depending on the selections of A1	1 type and measurement range
	See (Table 8.2-4). (p.24)	r type and measurement range.
8 12 त	A12 hysteresis type	Reference Value
531 F	Selects A12 hysteresis type (Medium or Reference Value)	
	 Indication condition and selection item are the same as the 	
A IZU	A12 ON side	Conductivity input: 0.01 mS/cm
		Temperature input: 1.0℃
()/ (/ _ / /	• Sets the span of A12 ON side.	
	If	is type], the span of ON/OFF
	side will be the same value.	
	• Indication condition and setting range are the same as	those of A11 ON side. (p.24)
8 IZL	A12 OFF side	Conductivity input: 0.01 mS/cm
001		Temperature input: 1.0℃
	Sets the span of A12 OFF side.	
	• Indication condition and setting range are the same as	those of A11 OFF side. (p.25)
R2 Id	A21 hysteresis type	Reference Value
녹립! F	• Selects A21 hysteresis type (Medium or Reference Valu	Je).
	· Indication condition and selection item are the same as the	ose of A11 hysteresis type. (p.24)
82 IU	A21 ON side	Conductivity input: 0.01 mS/cm
<u> </u>		Temperature input: 1.0℃
	• Sets the span of A21 ON side.	
	If	is type], the span of ON/OFF
	side will be the same value.	
	• Indication condition and setting range are the same as	
82 IL	A21 OFF side	Conductivity input: 0.01 mS/cm Temperature input: 1.0℃
	. Sate the enery of A21 OFF eide	
	• Sets the span of A21 OFF side.	these of A11 OFF side (n.25)
8228	Indication condition and setting range are the same as	
	A22 hysteresis type	Reference Value
5 <i>d1 F</i>	 Selects A22 hysteresis type (Medium or Reference Value) Indication condition and selection item are the same as the same	
8220		Conductivity input: 0.01 mS/cm
	A22 ON side	Temperature input: 1.0℃
001	• Sets the span of A22 ON side.	
	If $ c c c' F$ (Medium Value) is selected in [A22 hysteresi	is type] the span of ON/OFF
	side will be the same value.	
	 Indication condition and setting range are the same as 	those of A11 ON side (n 24)
8221	A22 OFF side	Conductivity input: 0.01 mS/cm
		Temperature input: 1.0℃
	• Sets the span of A22 OFF side.	
	• Indication condition and setting range are the same as	those of A11 OFF side. (p.25)
A I Io	A11 ON delay time	0 seconds
	• Sets A11 ON delay time.	
	The A11 does not turn ON (under the conditions of turn	ing ON) until the time set in
	[A11 ON delay time] elapses.	- ,
	• Not available if ニニニニ (No action), ビーロー (Error out	tput) or <i>F昂に</i> (Fail output)
	is selected in [A11 type].	. , ,
	• Setting range: 0 to 9999 seconds	

Character	Setting Item, Function, Setting Range	Factory Default
8 IZo	A12 ON delay time	0 seconds
	• Sets A12 ON delay time.	
	The A12 does not turn ON (under the conditions of turn	ning ON) until the time set in
	[A12 ON delay time] elapses.	5 ,
	 Indication condition and setting range are the same as 	those of A11 ON delay time.(p.25)
RZ la	A21 ON delay time	0 seconds
	• Sets A21 ON delay time.	0.00001140
·	The A21 does not turn ON (under the conditions of turn	ning ON) until the time set in
	[A21 ON delay time] elapses.	
	 Indication condition and setting range are the same as 	those of A11 ON delay time
	(p.25)	
8220	A22 ON delay time	0 seconds
	Sets A22 ON delay time.	0 00001100
·	The A22 does not turn ON (under the conditions of turn	(ON) until the time set in
	[A22 ON delay time] elapses.	ing only and the time set in
	 Indication condition and setting range are the same as 	those of A11 ON delay time(p 25)
R I Ic	A11 OFF delay time	0 seconds
Ē	• Sets A11 OFF delay time.	0 00001140
·	The A11 does not turn OFF (under the conditions of tur	ning OFF) until the time set in
	[A11 OFF delay time] elapses.	5 - 7
	・Not available if ニュニュ (No action), Er ロー (Error ou	tput) or <i>F用</i> ╎
	is selected in [A11 type].	
	Setting range: 0 to 9999 seconds	
8 IZc	A12 OFF delay time	0 seconds
	Sets A12 OFF delay time.	
	The A12 does not turn OFF (under the conditions of tur	ning OFF) until the time set in
	[A12 OFF delay time] elapses.	
	Indication condition and setting range are the same as	2
R2 Ic	A21 OFF delay time	0 seconds
	• Sets A21 OFF delay time.	raing OFF) until the time act in
	The A21 does not turn OFF (under the conditions of tur [A21 OFF delay time] elapses.	ning OFF) unui ule une set in
	 Indication condition and setting range are the same as 	those of A11 OFF delay time (p 26)
<i>822c</i>	A22 OFF delay time	0 seconds
	Sets A22 OFF delay time.	0.00001100
·	The A22 does not turn OFF (under the conditions of tur	ning OFF) until the time set in
	[A22 OFF delay time] elapses.	
	• Indication condition and setting range are the same as	those of A11 OFF delay time.(p.26)
R I In	A11 High/Low limits independent	Conductivity input: 0.00 mS/cm
000	lower side span	Temperature input: 0.0℃
	Sets the lower side span of A11 High/Low limits indepe	endent action.
	Disabled when set to 0.00 or 0.0° C.	
	• Available when $\mathcal{E} \subset \mathcal{H}_{\mathcal{L}}^{L}$ (Conductivity input High/Low lin	
	F 하님L (Temperature input High/Low limits independen • Setting range:	
	Conductivity input: Measurement range low limit to Mea	asurement range high limit (*1)
	Temperature input: 0.0 to 100.0° (*2)	
A IZn	A12 High/Low limits independent	Conductivity input: 0.00 mS/cm
	lower side span	Temperature input: 0.0°C
	Sets the lower side span of A12 High/Low limits independent	endent action.
	• For the action, indication condition and setting range, r	efer to [A11 High/Low limits
	independent lower side span]. (p.26)	

(*1) The measurement unit and decimal point place follow the measurement range. (*2) The placement of the decimal point does not follow the selection. It is fixed.

Factory Default Conductivity input: 0.00 mS/cm Temperature input: 0.0°C Dendent action. refer to [A11 High/Low limits Conductivity input: 0.00 mS/cm Temperature input: 0.0°C Dendent action. refer to [A11 High/Low limits Conductivity input: 0.0°C Dendent action. refer to [A11 High/Low limits Conductivity input: 0.00 mS/cm Temperature input: 0.0°C Dendent action. Imits independent action) or ent action) is selected in [A11 type].
Dendent action. refer to [A11 High/Low limits Conductivity input: 0.00 mS/cm Temperature input: 0.0℃ Dendent action. refer to [A11 High/Low limits Conductivity input: 0.00 mS/cm Temperature input: 0.0℃ pendent action. limits independent action) or
refer to [A11 High/Low limits Conductivity input: 0.00 mS/cm Temperature input: 0.0°C Dendent action. refer to [A11 High/Low limits Conductivity input: 0.00 mS/cm Temperature input: 0.0°C pendent action.
refer to [A11 High/Low limits Conductivity input: 0.00 mS/cm Temperature input: 0.0°C Dendent action. refer to [A11 High/Low limits Conductivity input: 0.00 mS/cm Temperature input: 0.0°C pendent action.
Temperature input: 0.0°C pendent action. refer to [A11 High/Low limits Conductivity input: 0.00 mS/cm Temperature input: 0.0°C pendent action.
Temperature input: 0.0°C pendent action. refer to [A11 High/Low limits Conductivity input: 0.00 mS/cm Temperature input: 0.0°C pendent action.
Dendent action. refer to [A11 High/Low limits Conductivity input: 0.00 mS/cm Temperature input: 0.0°C pendent action. limits independent action) or
refer to [A11 High/Low limits Conductivity input: 0.00 mS/cm Temperature input: 0.0°C pendent action.
Conductivity input: 0.00 mS/cm Temperature input: 0.0℃ pendent action. limits independent action) or
Temperature input: 0.0°C pendent action. limits independent action) or
Temperature input: 0.0°C pendent action. limits independent action) or
pendent action. limits independent action) or
limits independent action) or
• • •
. ,
ent action) is selected in [A11 type].
easurement range high limit (*1)
Conductivity input: 0.00 mS/cm
Temperature input: 0.0°C
pendent action.
refer to [A11 High/Low limits
Conductivity input: 0.00 mS/cm
Temperature input: 0.0℃
pendent action.
refer to [A11 High/Low limits
Conductivity input: 0.00 mS/cm
Conductivity input: 0.00 mS/cm Temperature input: 0.0℃
Temperature input: 0.0℃

(*1) The measurement unit and decimal point place follow the measurement range.(*2) The placement of the decimal point does not follow the selection. It is fixed.

Character	Setting Ite	m, Function	, Setting Range	Factory Default	
8 ; ;H	A11 hysteresis			Conductivity input: 0.01 mS/cm	
001	Temp			Temperature input: 1.0℃	
	Sets hysteresis of A11 High/Low limits independent action.				
	• Available when $\mathcal{E} \subset \mathcal{H}_{\mathcal{L}}$ (Conductivity input High/Low limits independent action) or				
	「デガビ」(Temperature input High/Low limits independent action) is selected in [A11 type].			,	
	• •	ers dependir	ng on the selections of A11	1 type and measurement range.	
	(Table 8.2-5) A Type Measurement Range Setting Range			Setting Range	
			0.00 to 20.00 mS/cm	0.01 to 2.00 mS/cm	
			0.0 to 200.0 mS/cm	0.1 to 20.0 mS/cm	
			0.0 to 500.0 mS/cm	0.1 to 50.0 mS/cm	
			0 to 500 mS/cm	1 to 50 mS/cm	
			0.000 to 2.000 mS/cm	0.001 to 0.200 mS/cm	
			0.000 to 5.000 mS/cm	0.001 to 0.500 mS/cm	
			0.00 to 50.00 mS/cm	0.01 to 5.00 mS/cm	
			0 to 2000 <i>µ</i> S/cm	1 to 200 μ S/cm	
			0 to 5000 <i>µ</i> S/cm	1 to 500 μ S/cm	
			0.000 to 2.000 S/m	0.001 to 0.200 S/m	
		Cell	0.00 to 20.00 S/m	0.01 to 2.00 S/m	
		constant	0.00 to 50.00 S/m	0.01 to 5.00 S/m	
		1.0/cm	0.0 to 50.0 S/m	0.1 to 5.0 S/m	
			0 to 2000 mS/m	1 to 200 mS/m	
			0.000 to 5.000 S/m	0.001 to 0.500 S/m	
			0.0 to 200.0 mS/m	0.1 to 20.0 mS/m	
	Conductivity		0.0 to 500.0 mS/m	0.1 to 50.0 mS/m	
	input		0.0 to 20.0 g/L	0.1 to 2.0 g/L	
			0 to 200 g/L	1 to 20 g/L	
			0 to 500 g/L	1 to 50 g/L	
			0 to 2000 mg/L	1 to 200 mg/L	
			0 to 5000 mg/L	1 to 500 mg/L	
			0.0 to 200.0 mS/cm	0.1 to 20.0 mS/cm	
			0.0 to 500.0 mS/cm	0.1 to 50.0 mS/cm	
			0 to 2000 mS/cm	1 to 200 mS/cm	
		Cell	0.00 to 20.00 S/m	0.01 to 2.00 S/m	
		constant	0.00 to 50.00 S/m	0.01 to 5.00 S/m	
		10.0/cm	0.0 to 200.0 S/m	0.1 to 20.0 S/m	
			0 to 200 g/L	1 to 20 g/L	
			0 to 500 g/L	1 to 50 g/L	
			0 to 2000 g/L	1 to 200 g/L	
			salinity 0.00 to 4.00%	0.01 to 0.40%	
	Tomoreaution	NaCI salin	ity 0.00 to 20.00%	0.01 to 2.00%	
	Temperature	0.0 to 100	.0°C	0.1 to 10.0℃	
	input				
R IZH 00 I	A12 hysteresis			Conductivity input: 0.01 mS/cm	
	· Coto huntarrai	f A 10	ou limito indonordant*	Temperature input: 1.0℃	
	•	-	ow limits independent acti		
		i condition ar	/hd setting range, refer to ا ا		
<i>R2 IH</i> ⊡a0 I	A21 hysteresis			Conductivity input: 0.01 mS/cm Temperature input: 1.0°C	
	Sets hysteresis c	of A21 High/L	ow limits independent acti	ion.	
	 For the indication 	n condition ar	nd setting range, refer to [/	A11 hysteresis]. (p.28)	

Character	Setting Item, Function, Setting Range	Factory Default	
RZZH	A22 hysteresis	Conductivity input: 0.01 mS/cm	
<u> </u>		Temperature input: 1.0℃	
	Sets hysteresis of A22 High/Low limits independent act	ion.	
	For the indication condition and setting range, refer to [A11 hysteresis]. (p.28)		
lErr	A output when input errors occur	Disabled	
oFF			
	If Enabled is selected, $A \Box \Box$ output and $A \Box \Box$ output si	tatus will be maintained in the	
	event of an input error.		
	If Disabled is selected, $A \square \square$ output and $A \square \square$ output s	tatus will be turned OFF in the	
	event of an input error.	_	
	• Available when $\mathcal{E} = \frac{1}{2} \mathcal{L}$ (Conductivity input low limit ac		
	high limit action), デ <i>ー</i> アと(Temperature input low limit a	action) or <i>にっとけ</i> (Temperature	
	input high limit action) is selected in [A $\Box\Box$ type].		
	• Selection item:		
	<i>□FF</i> ⊡: Disabled		
FIF I	Conductivity input filter time constant	0.0 seconds	
00	Sets Conductivity input filter time constant.		
	If the value is set too large, it affects A	o the delay of response.	
<u>, , , , , , , , , , , , , , , , , , , </u>	Setting range: 0.0 to 10.0 seconds		
E'so[] []00	Conductivity input sensor correction	0.00 mS/cm	
) , //	Sets conductivity input sensor correction value. This correction the conductivity input sensor correction value.		
	This corrects the measured value from the Conductivi	-	
	be set at the exact location where measurement i		
	conductivity may deviate from the conductivity in the m		
	desired conductivity can be obtained by adding a sensor correction value.However, it is effective within the measurement range regardless of the sensor correction		
	value.	egardless of the sensor correction	
	Conductivity after sensor correction = Current conductiv	Vity + (Sensor correction value)	
4E1-	• Setting range: ±10% of measurement span (*)	0.0	
	3-electrode Conductivity Sensor resistance	0Ω	
·	If the 3-electrode Conductivity Sensor is used, set the r Conductivity Sensor	esistance value of 3-electrode	
	Conductivity Sensor. • Setting range: 0 to 100 Ω		
dFcl	Conductivity inputs for moving average	20	
20	• Set the number of conductivity inputs used to obtain mo		
·	An average conductivity input value is calculated using	0 0	
	conductivity inputs. The conductivity input value is replaced every input sampling period.		
	However, the conductivity input moving average function is disabled in conductivity		
	calibration mode or in temperature calibration mode.		
	• Setting range: 1 to 120		

(*) The measurement unit and decimal point place follow the measurement range.

8.3 Temperature Input Group

To enter the Temperature Input Group, follow the procedure below.

(1) F.n.c. \vec{c} Press the \bigcirc key twice in Conductivity/Temperature Display Mode.

2 Fress the stress key.

The unit will enter Temperature Input Group, and "Temperature compensation method" will appear.

Character	I enter Temperature Input Group, and "Temperature compensation Setting Item, Function, Setting Range	Factory Default	
Γ c ñ	Temperature compensation method	NaCl	
nRcL	 Selects Temperature compensation calculation method. ・		
	NaCl. Select when the main salt ingredient in a sample is NaCl.		
	Γ = □E : Temperature compensation is conducted using temperature coefficient (%/°C) and a randomly selected reference temperature.		
	$\Box F F \square$: No temperature compensation		
EcoE	Temperature coefficient	2.00 %/°C	
2.00	Sets the temperature coefficient.	2.00 /0/ 0	
	If temperature coefficient is set to 2.00 %/°C, this value can solutions.	be used for most aqueous	
	If temperature coefficient of an aqueous solution is already-	known, set the value.	
	If temperature coefficient is set to 0.00 %/°C, conductivity wi		
	compensation will be indicated.		
	• Available only when $\int c a E$ is selected in [Temperature co	ompensation method].	
	• Setting range: -5.00 to 5.00 %/℃		
4 <i>6</i> nd	Reference temperature	25.0℃	
0250	Sets the reference temperature for temperature compensat		
	• Setting range: 5.0 to 95.0℃ (The placement of the decimal point		
dP2	Decimal point place	1 digit after decimal point	
	• Selects decimal point place.		
	• No decimal point		
	ΔΩ : 1 digit after decimal point		
con£ nc=>	Pt100 input wire type	3-wire type	
PF[]]3	 Selects the input wire type of Pt100. Not available for the Temperature element Pt1000. 		
	This setting item and all subsequent items are available onl	v when <i>PH</i> (Measured	
	value) is selected in [Temperature Display when no temperature		
	 ・ ア「□□□□□□□□□□□□□□□□□□□□□□□□□□□□		
	Pr⊡∃ : 3-wire type		
cRbL	Cable length correction	0.0 m	
<i>00</i>	Sets the cable length correction value.		
	• Available only when $P = C$ (2-wire type) is selected in [Pt10	0 input wire type].	
	Not available for the Temperature element Pt1000.		
	• Setting range: 0.0 to 100.0 m		
c 4 E c	Cable cross-section area	0.30 mm ²	
□0.30	Sets the cable cross-section area.		
	• Available only when $F = [2]$ (2-wire type) is selected in [Pt100 input wire type].		
	Not available for the Temperature element Pt1000.		
	• Setting range: 0.10 to 2.00 mm ²		
FIFZ	Temperature input filter time constant	0.0 seconds	
<u> </u>	Sets Temperature input filter time constant.		
	If the value is set too large, it affects A	e delay of response.	
	Setting range: 0.0 to 10.0 seconds		

Character	Setting Item, Function, Setting Range	Factory Default
dFcF	Temperature inputs for moving average	20
2O	• Set the number of temperature inputs used to obtain moving average. An average temperature input value is calculated using the selected number of temperature inputs. The temperature input value is replaced every input sampling period.	
	However, the temperature input moving average function is disabled in temperature calibration mode.Setting range: 1 to 120	

8.4 Basic Function Group

To enter the Basic Function Group, follow the procedure below.

- ① a.f.E.r Press the 🔘 key 3 times in Conductivity/Temperature Display Mode.
- ② Locit Press the ₩ key.

The unit will enter the Basic Function Group, and "Set value lock" will appear.

Character	Setting Item, Function, Setting Range	Factory Default		
Lock	Set value lock	Unlock		
	 Locks the set values to prevent setting errors. 			
	Selection item:			
	Unlock): All set values can be changed.			
	$L \Box c \int (Lock 1)$: None of the set values can be changed.			
	$L \Box c c'$ (Lock 2): Only A11, A12, A21 and A22 values can	_		
	$L \square \square \exists$ (Lock 3): All set values – except Sensor cell const	ant, Measurement unit,		
	Measurement range, Conductivity Zero a	and Span adjustment values,		
	Temperature calibration value, Transmis	sion output 1 Zero and Span		
	adjustment values, Transmission output	2 Zero and Span adjustment		
	values – can be temporarily changed. He	owever, they revert to their		
	previous value after the power is turned	off because they are not		
	saved in the non-volatile IC memory.	_		
	Do not change the A11, A12, A21 or A22	type. If they are changed,		
	they will affect other setting items.			
	Be sure to select Lock 3 when changing	the set value frequently via		
	software communication. (If a value set v	via software communication is		
	the same as the value before the setting	, the value will not be written		
	in non-volatile IC memory.)			
6746	Communication protocol	Shinko protocol		
noñL	Selects communication protocol.			
	• Selection item: <u>npnL</u> : Shinko protocol			
	nonda: MODBUS ASCII mode			
_	nadr: MODBUS RTU mode			
enno	Instrument number			
	• Sets the instrument number of each unit. (The instrument n	umbers should be set one by		
	one when multiple instruments are connected.) • Setting range: 0 to 95			
cñ4P	Communication speed	9600 bps		
	 Selects a communication speed equal to that of the host co 			
EE 98	• Selection item: $\Box \Box \Box \Box \Box B$: 9600 bps			
	□ /∃ਟੋ: 19200 bps			
	<i>∃</i> 8∀: 38400 bps			
<u>cāF</u>	Data bit/Parity	7 bits/Even		
7680	Selects data bit and parity.			
	Selection item:			
	ອີດດາ : 8 bits/No parity			
	דיםים : 7 bits/No parity			
	ອີຊິຢິຕ : 8 bits/Even			
	길든님규 : 7 bits/Even			
	ಶ್ವದದ : 8 bits/Odd			
	ੋਹਟੋਟ : 7 bits/Odd			

Character	Setting Item, Function, Setting Range	Factory Default	
6745	Stop bit	1 bit	
[]] /	Selects the stop bit.		
	• Selection item:		
Ira I	Transmission output 1 type	Conductivity transmission	
Ec	Selects Transmission output 1 type.		
	If $\sigma F F \square$ (No temperature compensation) is selected in [Temperature compensation		
	method (p.30)], and if $\int E \bar{\sigma} F'$ (Temperature transmission) is selected, then transmission		
	output 1 value will differ depending on the selection in [Tem	perature Display when no	
	temperature compensation (p.34)] as follows.		
	If $\Box F = (\text{Unlit})$ or $\neg f \Box = (\text{Reference temperature})$ is s	selected, the value set in	
	[Reference temperature (p.30)] will be output.		
	If PB (Measured value) is selected, the measured value	-	
	Available when Transmission output 1 (TA option) or Transmission output 1	nission output 2 (TA2 option)	
	is ordered. • Selection item:		
	$\mathcal{E}_{\mathcal{E}}$ Conductivity transmission		
	$F \in \overline{A}P$: Temperature transmission		
Ггні	Transmission output 1 high limit	20.00 mS/cm	
20.00	Sets Transmission output 1 high limit value. (This value correg		
	If Transmission output 1 high limit and low limit are set to the	. ,	
	output 1 will be fixed at 4 mA DC.		
	Available when Transmission output 1 (TA option) or Transmission output 1	nission output 2 (TA2 option)	
	is ordered.		
	Setting range:		
	If $\mathcal{E}_{\mathcal{C}}$ (Conductivity transmission) is selected in [Transr	nission output 1 type]:	
	Transmission output 1 low limit to Conductivity range hi		
	If 「E ニア (Temperature transmission) is selected in [Transr	mission output 1 type]:	
	Transmission output 1 low limit to 100.0℃		
	Transmission output 1 low limit	0.00 mS/cm	
000	Sets Transmission output 1 low limit value. (This value correpo		
	If Transmission output 1 high limit and low limit are set to the	e same value, Transmission	
	output 1 will be fixed at 4 mA DC.		
	Available when Transmission output 1 (TA option) or Transr	nission output 2 (TA2 option)	
	is ordered.		
	 Setting range: If <i>E c</i> [] (Conductivity transmission) is selected in [Transr 	nission output 1 typol:	
	Conductivity range low limit to Transmission output 1 hig		
	If $\Gamma \in \overline{\cap} P$ (Temperature transmission) is selected in [Transmission]		
	0.0° to Transmission output 1 high limit	incolori catpat i typo].	
[rod	Transmission output 2 type	Temperature transmission	
FEAP	Selects Transmission output 2 type.		
	If $\Box F F \square$ (No temperature compensation) is selected in [Te	emperature compensation	
	method (p.30)], and if $\int \mathcal{E} \overline{\partial \mathcal{P}}$ (Temperature transmission) i		
	output 2 value will differ depending on the selection in [Temperature Display when no		
	temperature compensation (p.34)] as follows.		
	If <i>ロ</i> デチロ (Unlit) or <i>'</i> っ <i>「</i> ゴロ (Reference temperature) is s	selected, the value set in	
	[Reference temperature (p.30)] will be output.		
	If PB (Measured value) is selected, the measured value		
	Available only when Transmission output 2 (TA2 option) is a	ordered.	
	• Selection item:		
	Ecological Conductivity transmission		
	<i>「ここ」</i> : Temperature transmission		

Character	Setting Item, Function, Setting Ran	ge	Factory Default	
Ггнг	Transmission output 2 high limit	0	100.0℃	
100.0	• Sets Transmission output 2 high limit value. (This value correponds to 20 mA DC output.) If Transmission output 2 high limit and low limit are set to the same value, Transmission output 2 will be fixed at 4 mA DC.			
	• Available only when Transmission output 2 (TA2 option) is ordered. • Setting range: If \mathcal{E}_{c} (Conductivity transmission) is selected in [Transmission output 2 type]:			
	Transmission output 2 low limit to Conduct If $\Gamma E \overline{\alpha} P$ (Temperature transmission) is select	tivity range hig	gh limit	
	Transmission output 2 low limit to 100.0℃			
[- <u> </u> 2	Transmission output 2 low limit			
	 Sets Transmission output 2 low limit value. (This If Transmission output 2 high limit and low limit output 2 will be fixed at 4 mA DC. Available only when Transmission output 2 (TA 	t are set to the	e same value, Transmission	
	 Setting range: If <i>E</i> = [] (Conductivity transmission) is selec Conductivity range low limit to Transmissio 	n output 2 hig	h limit	
	If 「E ニア (Temperature transmission) is selec 0.0℃ to Transmission output 2 high limit	ted in [Transn	nission output 2 type].	
Fre I	Transmission output 1 status when calibrating		Last value HOLD	
БЕРН	 Selects Transmission output 1 output status when calibrating conductivity. Available when Transmission output 1 (TA option) or Transmission output 2 (TA2 option is ordered. 			
	 Selection item: <i>b E F H</i>: Last value HOLD (Retains the last value before conductivity calibration, and outputs it.) <i>' E F H</i>: Set value HOLD (Outputs the value set in [Transmission output 1 value HOLD when calibrating].) 			
5-51	PBH Measured value (Outputs the measure			
	Transmission output 1 value HOLD when calibrating	•	transmission: 0.00 mS/cm transmission: 0.0℃	
	When $\mathcal{E}_{\mathcal{E}}$ (Conductivity transmission) is selected in [Transmission output 1 type]: Conductivity range low limit to Conductivity range high limit When $\mathcal{E}_{\mathcal{E}}\mathcal{P}$ (Temperature transmission) is selected in [Transmission output 1 type]: 0.0 to 100.0°C			
[rcd	Transmission output 2 status when calibrati	ng	Last value HOLD	
БЕГН	 Selects Transmission output 2 output status when calibrating conductivity. Available only when Transmission output 2 (TA2 option) is ordered. Selection item: 			
	 b E F H: Last value HOLD (Retains the last value before conductivity calibration, and outputs it.) 「と「 H: Set value HOLD (Outputs the value set in [Transmission output 2 value HOLD when calibration]) 			
	when calibrating].) 무님거들: Measured value (Outputs the measured value when calibrating conductivity.)			

Character	Setting Item, Function, Setting Range	Factory Default	
1-42	Transmission output 2 value HOLD when	Conductivity transmission: 0.00 mS/cm	
	calibrating	Temperature transmission: 0.0℃	
	Sets Transmission output 2 value HOLD.		
	• Available only when $\neg \mathcal{E} \mathcal{F} \mathcal{H}$ (Set value HOLD) is selected in [Transmission output 2		
	status when calibrating].		
	• Setting range:	a cleated in [Transmission output 2 type]	
	When <i>E c</i> (Conductivity transmission) is Conductivity range low limit to Conductivity		
	When <i>『 돈 하 문</i> (Temperature transmission) is		
	0.0 to 100.0℃		
	Auto-light function	Disabled	
	Selects Auto-light Enabled/Disabled.		
	Selection item:		
	レート Enabled		
d: 5P	Display selection	Conductivity/Temperature	
RLL	Selects items to be indicated on the Conduction	vity Display and Temperature Display.	
	Selection item: Conductivity Display	Temperature Display	
	RLL Conductivity	· · · · ·	
	E_{c} Conductivity	Temperature No indication	
	$\Gamma E \overline{\rho} P$ No indication	Temperature	
	$\frac{1}{2}$ No indication	No indication	
		No indication	
гі ле	Indication time	00.00	
0000	• Sets the indication time of the displays from		
	Displays remain lit when set to 00.00.		
	If any errors occur or any key is pressed while in unlit status, the display will light up.		
	• Not available if $\neg \Box \neg \Xi'$ (No indication) is selected in [Display selection].		
	Setting range:		
	00.00 (Remains lit)		
	00.01 to 60.00 (Minutes.Seconds)		
oFdP	Temperature Display when no temperature	Unlit	
_FF[]	compensation		
	• Selects an item to be indicated on the Tempe		
	temperature compensation) is selected in [Temperature compensation method]. The placement of the decimal point for the reference temperature follows the selection.		
	• Available only when $\Box \vdash \vdash$ (No temperature compensation) is selected in [Temperature compensation method].		
	Selection item:		
	ーディー: Conne ーディー: Reference temperature		
	PB Measured value		
	ー ビローー: Measured value		

Character	Setting Item, Function, Setting Range	Factory Default			
A loF	A1 output allocation	A11 type			
811	Selects A1 output allocation.				
	For A1 output, A11 type, A12 type, A21 type and/or A22 type	e can be allocated.			
	Output is OR output.				
	Not available if Transmission output 2 (TA2 option) is ordered.				
	Selection item:				
	<i>用 ¦ l</i> □ : A11 type				
	<i>⊟ ¦2</i> ⊡ : A12 type				
	<i>팀근 I</i> : A21 type				
	<i>₽22</i> ⊡ : A22 type				
	<i>팀 튐 _</i> :A11, A12 types				
	R2RL : A21, A22 types				
	<i>팀 팀근</i> : A11, A21 types				
	R2R2 : A12, A22 types				
	RLL: : A11, A12, A21, A22 types				
A2oF A2 (A2 output allocation	A21 type			
	Selects A2 output allocation.				
	For A2 output, A11 type, A12 type, A21 type and/or A22 type	e can be allocated.			
	Output is OR output.	racion output 2 (TA2 option)			
	• Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered.				
	 Selection items are the same as those of A1 output allocation 	on (p.35)			
oon l	Output ON time when A1 output ON	0 seconds			
	Sets Output ON time when A1 output is ON.	0.0001140			
	If Output ON time and OFF time are set, A1 output can be to	urned ON/OFF in a			
	configured cycle when A1 output is ON. (Fig. 8.4-1)				
	Not available if Transmission output 2 (TA2 option) is ordered.				
	• Setting range: 0 to 9999 seconds				
	Timing chart (Output ON time and OFF time when A	A1 output is ON)			
		· · · · · · · · · · · · · · · · · · ·			
	ON				
	Actual A1 output				
	OFF	ON time is turned			
	A1 output to which ON	OFF, caused by the			
	A1 output to which ON ON ON ON ON TIME and OFF	actual A1 output turning OFF.			
	time are set. OFF				
	time time time				
	(Fig. 8.4-1)				

Character	Setting Item, Function, Setting Range	Factory Default	
ooF I	Output OFF time when A1 output ON	0 seconds	
	Sets Output OFF time when A1 output is ON.		
	If Output ON time and OFF time are set, A1 output can be t	urned ON/OFF in a	
	configured cycle when A1 output is ON. (Fig. 8.4-1) (p.35)		
	• Not available if Transmission output 2 (TA2 option) is order	ed.	
	• Setting range: 0 to 9999 seconds		
oond	Output ON time when A2 output ON	0 seconds	
	Sets Output ON time when A2 output is ON.		
	If Output ON time and OFF time are set, A2 output can be t	urned ON/OFF in a	
	configured cycle when A2 output is ON. (Fig. 8.4-1) (p.35)		
	• Not available if Transmission output 1 (TA option) or Transn	nission output 2 (TA2 option)	
	is ordered.	,	
	• Setting range: 0 to 9999 seconds		
ooF2	Output OFF time when A2 output ON	0 seconds	
\Box	Sets Output OFF time when A2 output is ON.		
	If Output ON time and OFF time are set, A2 output can be to	urned ON/OFF in a	
	configured cycle when A2 output is ON. (Fig. 8.4-1) (p.35)		
	Not available if Transmission output 1 (TA option) or Transm	nission output 2 (TA2 option)	
	is ordered.		
	Setting range: 0 to 9999 seconds		
R 1E	A1 conductivity input error alarm A type	No action	
	• Selects an A type in order to assess A1 conductivity inp		
	 Not available if Transmission output 2 (TA2 option) is order Selection item 	ea.	
	$\exists I I \Box$: A11 type		
	<i>□ □ □ □ □ □ □ □ □ □</i>		
	<i>用己 Ⅰ</i> □ : A21 type		
	<i>₽₽₽</i> □ : A22 type		
826	A2 conductivity input error alarm A	No action	
	• Selects A type in order to assess A2 conductivity input		
	Not available if Transmission output 1 (TA option) or Transm	nission output 2 (TA2 option)	
	is ordered.		
	Selection item		
	<i>用 I</i> ⊡ : A11 type <i>用 I</i> ⊡ : A12 type		
	<i>吊↓記</i> □: A12 type 吊記 /□: A21 type		
	$\exists \vec{c} \vec{c} = A 2 T type$		
	I I I I I I I I I I I I I I I I I I I		

Character	Setting Item, Function, Setting Range	Factory Default			
R IEo	A1 conductivity input error alarm band	0.00 mS/cm			
<i>0.00</i>	when A output ON				
	• Sets the band to assess A1 conductivity input error alarm when $A \square \square$ output is ON.				
	Refer to 'Conductivity Input Error Alarm' on p.38.				
	Not available if Transmission output 2 (TA2 option) is order	ed.			
	Setting range:				
	Conductivity range low limit to Conductivity range high limit				
	When set to 0.0 or 0.00, Conductivity input error alarm is dis				
A lof	A1 conductivity input error alarm time	0 seconds			
	when A output ON				
	• Sets time to assess A1 conductivity input error alarm when				
	Refer to 'Conductivity Input Error Alarm' on p.38.				
	Not available if Transmission output 2 (TA2 option) is ordered	ed.			
	 Setting range: 0 to 9999 seconds or minutes (Time unit follows the select 	ion in [Conductivity input			
	error alarm time unit].)				
	When set to 0, Conductivity input error alarm is disabled.				
A IEc	A1 conductivity input error alarm band	0.00 mS/cm			
	when A O output OFF				
	• Sets the band to assess A1 conductivity input error alarm w	hen A			
	Refer to 'Conductivity Input Error Alarm' on p.38.	•			
	Not available if Transmission output 2 (TA2 option) is ordered.				
	Setting range:				
	Conductivity range low limit to Conductivity range high limit				
	When set to 0.0 or 0.00, Conductivity input error alarm is disabled.				
$H I_{C} \Gamma$	A1 conductivity input error alarm time	0 seconds			
	when A output OFF				
	• Sets time to assess A1 conductivity input error alarm when	$A \sqcup \Box$ output is OFF.			
	Refer to 'Conductivity Input Error Alarm' on p.38.				
	Not available if Transmission output 2 (TA2 option) is ordered	ed.			
	 Setting range: 0 to 9999 seconds or minutes (Time unit follows the select 	ion in [Conductivity input			
	error alarm time unit].)				
	When set to 0, Conductivity input error alarm is disabled.				
RZEa	A2 conductivity input error alarm band	0.00 mS/cm			
	when A output ON				
	• Sets the band to assess A2 conductivity input error alarm when A output is ON.				
	Refer to 'Conductivity Input Error Alarm' on p.38.				
	Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option)				
	is ordered.				
	Setting range:				
	Conductivity range low limit to Conductivity range high limit				
	When set to 0.0 or 0.00, Conductivity input error alarm is dis	sabled.			

R2of A2 conductivity input error alarm time 0 seconds When A□ output ON . Sets time to assess A2 conductivity input error alarm when A□ output is ON. Refer to 'Conductivity Input Error Alarm' on p.38. Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. Setting range: 0 to 9999 seconds or minutes (Time unit follows the selection in [Conductivity input error alarm time unit].) When set to 0, Conductivity input error alarm is disabled. R2Ecc A2 conductivity input error alarm band 0.00 mS/cm When A□ output OFF • Sets the band to assess A2 conductivity input error alarm when A□ output is OFF. Refer to 'Conductivity Input Error Alarm' on p.38. • Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. • Setting range: Conductivity input error alarm ion p.38. • Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. • Setting range: Conductivity input error alarm time 0 seconds • Setting range: Conductivity input error alarm time 0 seconds When set to 0.0 or 0.00, Conductivity input error alarm when A□ output is OFF. Refer to 'Conductivity input error alarm time 0 seconds When A□ output OFF <th>Character</th> <th>Setting Item, Function, Setting Range</th> <th>Factory Default</th>	Character	Setting Item, Function, Setting Range	Factory Default				
 Sets time to assess A2 conductivity input error alarm when A□ output is ON. Refer to 'Conductivity Input Error Alarm' on p.38. Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. Setting range: 0 to 9999 seconds or minutes (Time unit follows the selection in [Conductivity input error alarm time unit].) When set to 0, Conductivity input error alarm is disabled. <i>R2E c</i> A2 conductivity input error alarm band 0.00 mS/cm when A□ output OFF Sets the band to assess A2 conductivity input error alarm when A□ output is OFF. Refer to 'Conductivity Input Error Alarm' on p.38. Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. Setting range: Conductivity range low limit to Conductivity range high limit When set to 0.0 or 0.00, Conductivity range high limit When set to 0.0 or 0.00, Conductivity input error alarm is disabled. <i>R2c f</i> <i>A2</i> conductivity input error alarm time when A□ output OFF Sets time to assess A2 conductivity input error alarm mis disabled. <i>R2 c f</i> <i>A2</i> conductivity input error alarm time when A□ output OFF Set time to assess A2 conductivity input error alarm set output is OFF. Refer to 'Conductivity Input error alarm time when A□ output OFF Set time to assess A2 conductivity input error alarm when A□ output is OFF. Refer to 'Conductivity Input error alarm time	RZof	A2 conductivity input error alarm time	0 seconds				
Refer to 'Conductivity Input Error Alarm' on p.38. • Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. • Setting range: 0 to 9999 seconds or minutes (Time unit follows the selection in [Conductivity input error alarm time unit].) When set to 0, Conductivity input error alarm is disabled. R2Ec A2 conductivity input error alarm band 0.00 mS/cm when A□ output OFF • Sets the band to assess A2 conductivity input error alarm when A□ output is OFF. Refer to 'Conductivity Input Error Alarm' on p.38. • Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. • Setting range: Conductivity input error alarm time 0 seconds when A□ output OFF • Setting range: Conductivity input error alarm time 0 seconds when A□ output OFF • Settime to assess A2 conductivity input error alarm when A□ output is OFF. Refer to 'Conductivity input error alarm time 0 seconds when A□ output OFF • Sets time to assess A2 conductivity input error alarm when A□ output is OFF. Refer to 'Conductivity Input Error Alarm' on p.38. • Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. • Setting range:<		when A output ON					
 Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. Setting range: 0 to 9999 seconds or minutes (Time unit follows the selection in [Conductivity input error alarm time unit].) When set to 0, Conductivity input error alarm is disabled. <i>R2Ec</i> A2 conductivity input error alarm band 0.00 mS/cm when A□ output OFF Sets the band to assess A2 conductivity input error alarm when A□ output is OFF. Refer to 'Conductivity Input Error Alarm' on p.38. Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. Setting range: Conductivity range low limit to Conductivity range high limit When set to 0.0 or 0.00, Conductivity input error alarm is disabled. <i>R2cr</i> Sets time to assess A2 conductivity input error alarm is disabled. <i>R2cr</i> Sets time to assess A2 conductivity range high limit When set to 0.0 or 0.00, Conductivity range high limit When A□ output OFF Sets time to assess A2 conductivity input error alarm when A□ output is OFF. Refer to 'Conductivity Input Error Alarm' on p.38. Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. Setting range: O to 9999 seconds or minutes (Time unit follows the selection in [Conductivity input error alarm time unit].) When set to 0, Conductivity input error alarm is disabled. Seting range: 0 to 9999 seconds or minutes (Time unit follows the selection in [Con		• Sets time to assess A2 conductivity input error alarm when A output is ON.					
is ordered. Setting range: 0 to 9999 seconds or minutes (Time unit follows the selection in [Conductivity input error alarm time unit].) When set to 0, Conductivity input error alarm is disabled. $RZEc$ QDD A2 conductivity input error alarm band 0.00 mS/cm $when A \square$ output OFF • Sets the band to assess A2 conductivity input error alarm when A \square output is OFF. Refer to 'Conductivity Input Error Alarm' on p.38. • Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. • Setting range: Conductivity range low limit to Conductivity range high limit When set to 0.0 or 0.00, Conductivity input error alarm is disabled. $RZcf$ A2 conductivity input error alarm time 0 seconds when A \square output OFF • Sets time to assess A2 conductivity input error alarm is disabled. $RZcf$ A2 conductivity input error alarm time 0 seconds when A \square output OFF • Sets time to assess A2 conductivity input error alarm when A \square output is OFF. Refer to 'Conductivity Input Error Alarm' on p.38. • Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. • Settin		Refer to 'Conductivity Input Error Alarm' on p.38.					
• Setting range: 0 to 9999 seconds or minutes (Time unit follows the selection in [Conductivity input error alarm time unit].) When set to 0, Conductivity input error alarm is disabled. R2Ec A2 conductivity input error alarm band 0.00 mS/cm when A□ output OFF • Sets the band to assess A2 conductivity input error alarm when A□ output is OFF. Refer to 'Conductivity Input Error Alarm' on p.38. • Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. • Setting range: Conductivity range low limit to Conductivity input error alarm is disabled. R2cf A2 conductivity input error alarm time 0 seconds when A□ output OFF • Sets time to assess A2 conductivity input error alarm is disabled. R2cf A2 conductivity input error alarm time 0 seconds when A□ output OFF • Sets time to assess A2 conductivity input error alarm when A□ output is OFF. Refer to 'Conductivity Input Error Alarm' on p.38. • Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. • Setting range: 0 to 9999 seconds or minutes (Time unit follows the selection in [Conductivity input error alarm time unit].) Wh		Not available if Transmission output 1 (TA option) or Transr	nission output 2 (TA2 option)				
0 to 9999 seconds or minutes (Time unit follows the selection in [Conductivity input error alarm time unit].) When set to 0, Conductivity input error alarm is disabled. R2Ec QQQ A2 conductivity input error alarm band 0.00 mS/cm when A□ output OFF • Sets the band to assess A2 conductivity input error alarm when A□ output is OFF. Refer to 'Conductivity Input Error Alarm' on p.38. • Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. • Setting range: Conductivity input error alarm time 0 seconds R2cr A2 conductivity input error alarm time when A□ output OFF 0 seconds · Setting range: Conductivity input error alarm is disabled. R2cr A2 conductivity input error alarm time 0 seconds when A□ output OFF 0 seconds · Sets time to 0.0 or 0.00, Conductivity input error alarm is disabled. A2 conductivity input error alarm time 0 seconds when A□ output OFF • • • • • · Sets time to assess A2 conductivity input error alarm when A□ output is OFF. • • • · Sets ing range: 0 'so onductivity input error alarm on p.38. •		is ordered.					
error alarm time unit].) When set to 0, Conductivity input error alarm is disabled. $RZEc$ $\Box QDD$ A2 conductivity input error alarm band when A \Box output OFF • Sets the band to assess A2 conductivity input error alarm when A \Box output is OFF. Refer to 'Conductivity Input Error Alarm' on p.38. • Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. • Setting range: Conductivity range low limit to Conductivity range high limit When set to 0.0 or 0.00, Conductivity input error alarm is disabled. $RZcf$ A2 conductivity input error alarm time when A \Box output OFF • Sets time to assess A2 conductivity input error alarm is disabled. $RZcf$ A2 conductivity input error alarm time when A \Box output OFF • Sets time to assess A2 conductivity input error alarm when A \Box output is OFF. Refer to 'Conductivity Input Error Alarm' on p.38. • Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. • Setting range: 0 to 9999 seconds or minutes (Time unit follows the selection in [Conductivity input error alarm time unit].) When set to 0, Conductivity input error alarm is disabled. \bar{n}_{-} Conductivity input error alarm time unit. • Selection item: $\neg c$ \bar{n}_{-} Selects conductivity input error alarm time unit. • Selection item: $\neg c$		8 8					
When set to 0, Conductivity input error alarm is disabled. R2E c CCDD A2 conductivity input error alarm band when A□ output OFF • Sets the band to assess A2 conductivity input error alarm when A□ output is OFF. Refer to 'Conductivity Input Error Alarm' on p.38. • Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. • Setting range: Conductivity range low limit to Conductivity range high limit When set to 0.0 or 0.00, Conductivity input error alarm is disabled. R2 c f A2 conductivity input error alarm time when A□ output OFF • Sets time to assess A2 conductivity input error alarm when A□ output is OFF. Refer to 'Conductivity Input error alarm time when A□ output OFF 0 seconds • Sets time to assess A2 conductivity input error alarm when A□ output is OFF. Refer to 'Conductivity Input Error Alarm' on p.38. 0 seconds • Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. • Setting range: 0 to 9999 seconds or minutes (Time unit follows the selection in [Conductivity input error alarm time unit].) When set to 0, Conductivity input error alarm is disabled. Second(s) • Sets conductivity input error alarm time unit '\5 c □' : Second(s) Second(s)		0 to 9999 seconds or minutes (Time unit follows the select	tion in [Conductivity input				
R2Ec A2 conductivity input error alarm band 0.00 mS/cm CCDD when A□ output OFF 0.00 mS/cm · Sets the band to assess A2 conductivity input error alarm when A□ output is OFF. Refer to 'Conductivity Input Error Alarm' on p.38. · Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. • Setting range: Conductivity range low limit to Conductivity range high limit When set to 0.0 or 0.00, Conductivity input error alarm is disabled. 0 seconds R2 ⊂ Γ A2 conductivity input error alarm time when A□ output is OFF. Refer to 'Conductivity input error alarm time 0 seconds when A□ output OFF • Sets time to assess A2 conductivity input error alarm when A□ output is OFF. Refer to 'Conductivity Input Error Alarm' on p.38. • Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. • Sets time to assess A2 conductivity input error alarm when A□ output is OFF. Refer to 'Conductivity Input Error Alarm' on p.38. • Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. • Setting range: • Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. • Setting range: • Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. • Setting range:		error alarm time unit].)					
$\Box \Box \Box$ when A \Box output OFF • Sets the band to assess A2 conductivity input error alarm when A \Box output is OFF. Refer to 'Conductivity Input Error Alarm' on p.38. • Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. • Setting range: Conductivity range low limit to Conductivity range high limit When set to 0.0 or 0.00, Conductivity input error alarm is disabled. $R2ci$ A2 conductivity input error alarm time 0 seconds when A \Box output OFF 0 seconds • Sets time to assess A2 conductivity input error alarm when A \Box output is OFF. Refer to 'Conductivity Input Error Alarm' on p.38. • Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. • Sets time to assess A2 conductivity input error alarm when A \Box output is OFF. Refer to 'Conductivity Input Error Alarm' on p.38. • Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. • Setting range: 0 to 9999 seconds or minutes (Time unit follows the selection in [Conductivity input error alarm time unit].) When set to 0, Conductivity input error alarm is disabled. $\tilde{r} - \frac{r}{2c}$ • D 9999 seconds or minutes (Time unit follows the selection in [Conductivity input error alarm time unit]. • Selects conductivity		When set to 0, Conductivity input error alarm is disabled.					
 Sets the band to assess A2 conductivity input error alarm when A□ output is OFF. Refer to 'Conductivity Input Error Alarm' on p.38. Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. Setting range: Conductivity range low limit to Conductivity range high limit When set to 0.0 or 0.00, Conductivity input error alarm is disabled. A2 conductivity input error alarm time when A□ output OFF Sets time to assess A2 conductivity input error alarm when A□ output is OFF. Refer to 'Conductivity Input Error Alarm' on p.38. Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. Sets time to assess A2 conductivity input error alarm when A□ output is OFF. Refer to 'Conductivity Input Error Alarm' on p.38. Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. Setting range: 0 to 9999 seconds or minutes (Time unit follows the selection in [Conductivity input error alarm time unit].) When set to 0, Conductivity input error alarm is disabled. Conductivity input error alarm time unit. Selects conductivity input error alarm time unit. Selection item: '\sec_1': Second(s) 		A2 conductivity input error alarm band	0.00 mS/cm				
Refer to 'Conductivity Input Error Alarm' on p.38. • Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. • Setting range: Conductivity range low limit to Conductivity range high limit When set to 0.0 or 0.00, Conductivity input error alarm is disabled. R2cf A2 conductivity input error alarm time 0 seconds when A□ output OFF • Sets time to assess A2 conductivity input error alarm when A□ output is OFF. Refer to 'Conductivity Input Error Alarm' on p.38. • Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. • Sets time to assess A2 conductivity input error alarm when A□ output is OFF. Refer to 'Conductivity Input Error Alarm' on p.38. • Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. • Setting range: 0 to 9999 seconds or minutes (Time unit follows the selection in [Conductivity input error alarm time unit].) When set to 0, Conductivity input error alarm is disabled. $\bar{\sigma}_{-} \bar{\gamma}_{-}^{-}$ $\bar{\gamma}_{-}^{-} \bar{\gamma}_{-}^{-}$ Selects conductivity input error alarm time unit. • Selection item: • Selection item: • $\bar{\gamma}_{-} \bar{\zeta}_{-}^{-}$: Second(s) <th></th> <td>•</td> <td></td>		•					
• Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. • Setting range: Conductivity range low limit to Conductivity range high limit When set to 0.0 or 0.00, Conductivity input error alarm is disabled. B2cf A2 conductivity input error alarm time 0 seconds when A□ output OFF • Sets time to assess A2 conductivity input error alarm when A□ output is OFF. Refer to 'Conductivity Input Error Alarm' on p.38. • Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. • Setting range: 0 to 9999 seconds or minutes (Time unit follows the selection in [Conductivity input error alarm time unit].) When set to 0, Conductivity input error alarm is disabled. $\overline{n}_{-} \overline{-}$ $\overline{-} \overline{-} \overline{-}$ · Selects conductivity input error alarm time unit. · Selection item: · $\overline{-} \overline{-}$ · $\overline{-} \overline{-}$		Sets the band to assess A2 conductivity input error alarm w	when A \Box output is OFF.				
is ordered. • Setting range: Conductivity range low limit to Conductivity range high limit When set to 0.0 or 0.00, Conductivity input error alarm is disabled. $R \ge c \Gamma$ A2 conductivity input error alarm time 0 seconds when A \Box output OFF • Sets time to assess A2 conductivity input error alarm when A \Box output is OFF. Refer to 'Conductivity Input Error Alarm' on p.38. • Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. • Setting range: 0 to 9999 seconds or minutes (Time unit follows the selection in [Conductivity input error alarm time unit].) When set to 0, Conductivity input error alarm is disabled. $\overline{n}_{-} h_{-}$ $\gamma \in c_{-}$ • Selection item: $\gamma \in c_{-}$ • Selection item:							
• Setting range: Conductivity range low limit to Conductivity range high limit When set to 0.0 or 0.00, Conductivity input error alarm is disabled. A2 conductivity input error alarm time 0 seconds when A \Box output OFF 0 seconds • Sets time to assess A2 conductivity input error alarm when A \Box output is OFF. Refer to 'Conductivity Input Error Alarm' on p.38. • Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. • Setting range: 0 to 9999 seconds or minutes (Time unit follows the selection in [Conductivity input error alarm time unit].) When set to 0, Conductivity input error alarm is disabled. $\bar{n}_{-} - \frac{1}{2}$ • Selects conductivity input error alarm time unit. • Selection item: $\neg E c$		Not available if Transmission output 1 (TA option) or Transr	nission output 2 (TA2 option)				
Conductivity range low limit to Conductivity range high limit When set to 0.0 or 0.00, Conductivity input error alarm is disabled. $R \ge c \Gamma$ A2 conductivity input error alarm time when A \Box output OFF • Sets time to assess A2 conductivity input error alarm when A \Box output is OFF. Refer to 'Conductivity Input Error Alarm' on p.38. • Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. • Setting range: 0 to 9999 seconds or minutes (Time unit follows the selection in [Conductivity input error alarm time unit].) When set to 0, Conductivity input error alarm is disabled. $\vec{n} = 4 \Box$ Conductivity input error alarm time unit $h \in c \Box$: Selects conductivity input error alarm time unit. • Selection item: $4 \in c \Box$: Second(s)							
When set to 0.0 or 0.00, Conductivity input error alarm is disabled. $R \ge c T$ O seconds $M \ge 0$ output OFFO seconds $M \ge 0$ sets time to assess A2 conductivity input error alarm when A \square output is OFF. Refer to 'Conductivity Input Error Alarm' on p.38.O output is OFF. Refer to 'Conductivity Input Error Alarm' on p.38.Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered.Setting range: 0 to 9999 seconds or minutes (Time unit follows the selection in [Conductivity input error alarm time unit].) When set to 0, Conductivity input error alarm is disabled. $\vec{n} = 4 \square$ Conductivity input error alarm time unit $\neg E c \square$ Second(s) $\vec{n} = 4 \square$ Conductivity input error alarm time unit. $\neg E c \square$ Second(s)							
R∃ci A2 conductivity input error alarm time when A□ output OFF 0 seconds • Sets time to assess A2 conductivity input error alarm when A□ output is OFF. Refer to 'Conductivity Input Error Alarm' on p.38. • Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. • Setting range: 0 to 9999 seconds or minutes (Time unit follows the selection in [Conductivity input error alarm time unit].) When set to 0, Conductivity input error alarm is disabled. • Selects conductivity input error alarm time unit. • Selection item: • ½ € c□ : Second(s)							
when A output OFF • Sets time to assess A2 conductivity input error alarm when A output is OFF. Refer to 'Conductivity Input Error Alarm' on p.38. • Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. • Setting range: 0 to 9999 seconds or minutes (Time unit follows the selection in [Conductivity input error alarm time unit].) When set to 0, Conductivity input error alarm is disabled. $\overline{\Delta} = \overline{\Delta}$ • Selects conductivity input error alarm time unit. • Selection item: $\overline{\Delta} \in c$		· ·					
• Sets time to assess A2 conductivity input error alarm when A \square output is OFF. Refer to 'Conductivity Input Error Alarm' on p.38. • Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. • Setting range: 0 to 9999 seconds or minutes (Time unit follows the selection in [Conductivity input error alarm time unit].) When set to 0, Conductivity input error alarm is disabled. $\bar{n}_{-} \bar{n}_{-}$ • Selects conductivity input error alarm time unit. • Selection item: $\bar{n}_{-} \bar{c}_{-}$ • Selection item: $\bar{n}_{-} \bar{c}_{-}$ • Selection item:			0 seconds				
Refer to 'Conductivity Input Error Alarm' on p.38.• Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered.• Setting range: 0 to 9999 seconds or minutes (Time unit follows the selection in [Conductivity input error alarm time unit].) When set to 0, Conductivity input error alarm is disabled. $\overline{n} - \overline{n}$ $\overline{n} - $	L <i>ii</i>	•					
 Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. Setting range: 0 to 9999 seconds or minutes (Time unit follows the selection in [Conductivity input error alarm time unit].) When set to 0, Conductivity input error alarm is disabled. To - '-'			$A \sqcup \sqcup$ output is OFF.				
is ordered. • Setting range: 0 to 9999 seconds or minutes (Time unit follows the selection in [Conductivity input error alarm time unit].) When set to 0, Conductivity input error alarm is disabled. $\overline{n}_{-} \overline{-} \overline{-}$ $\overline{n}_{-} \overline{-} \overline{-}$ Selects conductivity input error alarm time unit. • Selection item: $\neg \overline{-} \overline{-} \overline{-}$ • Selection item: $\neg \overline{-} \overline{-} \overline{-}$			mission output 2 (TA2 option)				
• Setting range: • Setting range: • Setting range: • O to 9999 seconds or minutes (Time unit follows the selection in [Conductivity input error alarm time unit].) When set to 0, Conductivity input error alarm is disabled. • Conductivity input error alarm time unit • Selects conductivity input error alarm time unit. • Selection item: • $ \xi \in \square$: Second(s)		,					
0 to 9999 seconds or minutes (Time unit follows the selection in [Conductivity input error alarm time unit].) When set to 0, Conductivity input error alarm is disabled. \overline{n}_{-} \overline{n}_{-} \overline{n}_{-} \overline{n}_{-} Selects conductivity input error alarm time unit. Selection item: $\overline{n}_{-} \mathcal{E}_{-}$ Selection item: $\overline{n}_{-} \mathcal{E}_{-}$							
error alarm time unit].) When set to 0, Conductivity input error alarm is disabled. $\vec{n}_{-} \vec{-}$ Conductivity input error alarm time unit Second(s) $\vec{-} \vec{-} \vec{-}$ • Selects conductivity input error alarm time unit. • Selection item: $\vec{-} \vec{-} \vec{-}$ • Selection item: $\vec{-} \vec{-} \vec{-}$		5 5	ion in [Conductivity input				
When set to 0, Conductivity input error alarm is disabled. Diamondal Second(s) Conductivity input error alarm time unit. Selects conductivity input error alarm time unit. Selection item: Diamondal E c Selection item: Diamondal E c							
\vec{n}_{-} Conductivity input error alarm time unitSecond(s) $\neg \mathcal{E}_{\mathcal{E}}$ • Selects conductivity input error alarm time unit.• Selection item: $\neg \mathcal{E}_{\mathcal{E}}$: Second(s)		- /					
・Selects conductivity input error alarm time unit. ・Selection item: っとに□: Second(s)	ā 50	· ·	Second(s)				
 Selection item: っとこ□: Second(s) 							
っとこ: Second(s)	• • • • • • • • • • • • • • • • • • • •						
σί σ:: Minute(s)		\vec{n} \vec{n} : Minute(s)					

Conductivity Input Error Alarm

Conductivity input error alarm is used for detecting actuator trouble.

Even if Conductivity input error alarm time has elapsed – if conductivity input does not become higher than conductivity input error alarm band – the instrument assumes that actuator trouble has occurred, and sets Status flag 2.

In Serial communication, status can be read by reading Status flag 2 (A1, A2 conductivity input error alarm output flag bit).

Conductivity input error alarm is disabled during Conductivity Zero or Span adjustment.

Conductivity input error alarm is enabled only when \mathcal{E}_{c} , \mathcal{L} (Conductivity input low limit action) or \mathcal{E}_{c} , \mathcal{H} (Conductivity input high limit action) is selected in [A11, A12, A21, A22 type (pp.22, 23)].

9. Calibration

Conductivity calibration mode, Temperature calibration mode, and Transmission output 1 and 2 adjustment modes are described below.

9.1 Conductivity Calibration Mode

Deterioration of the 4-electrode Conductivity Sensor might cause the cell constant to change. To correct the changed cell constant, conductivity calibration must be performed. Calibrate Conductivity Zero adjustment first, followed by Conductivity Span adjustment. During conductivity calibration, A

However, if $L \Box c \neq l$ (Lock 1), $L \Box c c \neq l$ (Lock 2) or $L \Box c \neq l$ (Lock 3) is selected in [Set value lock (p.31)], the unit cannot move to Conductivity calibration mode.

The following outlines the procedure for conductivity calibration.

- When selecting bEFH (Last value HOLD) in [Transmission output 1 status when calibrating (p.33)] or [Transmission output 2 status when calibrating (p.33)], select it while the 4-electrode Conductivity Sensor is being immersed in the solution currently measured.
- 2 Do not immerse the 4-electrode Conductivity Sensor in the standard solution.
- ^③ Press and hold the 🖂 key and 💿 key (in that order) together for 3 seconds in Conductivity/ Temperature Display Mode.

The unit enters Conductivity calibration Zero adjustment mode, and indicates the following.

Display	Indication
Conductivity Display	$B a \Box a$ and conductivity are indicated alternately.
Temperature Display	Conductivity Zero adjustment value

④ Set the Conductivity Zero adjustment value with the △ or ▽ key so that the conductivity becomes 0. If conductivity is 0, this adjustment is not necessary.

Setting range of the Conductivity Zero adjustment value differs depending on the measurement range. See (Table 9.1-1.). (p. 40)

However, it is effective within the measurement range regardless of the Conductivity Zero adjustment value.

(Table 9.1-1)

Meas	surement Range	Conductivity Zero Adjustment Value Setting Range	
	0.00 to 20.00 mS/cm	-2.00 to 2.00 mS/cm	
	0.0 to 200.0 mS/cm	-20.0 to 20.0 mS/cm	
	0.0 to 500.0 mS/cm	-50.0 to 50.0 mS/cm	
	0 to 500 mS/cm	-50 to 50 mS/cm	
	0.000 to 2.000 mS/cm	-0.200 to 0.200 mS/cm	
	0.000 to 5.000 mS/cm	-0.500 to 0.500 mS/cm	
	0.00 to 50.00 mS/cm	-5.00 to 5.00 mS/cm	
	0 to 2000 μ S/cm	-200 to 200 µS/cm	
	0 to 5000 $\mu m S/cm$	-500 to 500 µS/cm	
Call	0.000 to 2.000 S/m	-0.200 to 0.200 S/m	
Cell constant	0.00 to 20.00 S/m	-2.00 to 2.00 S/m	
1.0/cm	0.00 to 50.00 S/m	-5.00 to 5.00 S/m	
1.0/011	0.0 to 50.0 S/m	-5.0 to 5.0 S/m	
	0 to 2000 mS/m	-200 to 200 mS/m	
	0.000 to 5.000 S/m	-0.500 to 0.500 S/m	
	0.0 to 200.0 mS/m	-20.0 to 20.0 mS/m	
	0.0 to 500.0 mS/m	-50.0 to 50.0 mS/m	
	0.0 to 20.0 g/L	-2.0 to 2.0 g/L	
	0 to 200 g/L	-20 to 20 g/L	
	0 to 500 g/L	-50 to 50 g/L	
	0 to 2000 mg/L	-200 to 200 mg/L	
	0 to 5000 mg/L	-500 to 500 mg/L	
	0.0 to 200.0 mS/cm	-20.0 to 20.0 mS/cm	
	0.0 to 500.0 mS/cm	-50.0 to 50.0 mS/cm	
	0 to 2000 mS/cm	-200 to 200 mS/cm	
Cell	0.00 to 20.00 S/m	-2.00 to 2.00 S/m	
constant	0.00 to 50.00 S/m	-5.00 to 5.00 S/m	
10.0/cm	0.0 to 200.0 S/m	-20.0 to 20.0 S/m	
0 to 200 g/L		-20 to 20 g/L	
	0 to 500 g/L	-50 to 50 g/L	
	0 to 2000 g/L	-200 to 200 g/L	
Seawater sali	nity 0.00 to 4.00%	-0.40 to 0.40%	
NaCl salinity (0.00 to 20.00%	-2.00 to 2.00%	

^⑤ Press the [™] key.

Conductivity Zero adjustment value will be registered, and the unit will move to Conductivity calibration Span adjustment mode.

The following is indicated in Conductivity calibration Span adjustment mode.

Display	Indication
Conductivity Display	Ball'h and conductivity are indicated alternately.
Temperature Display	Conductivity Span adjustment value

⁶ Immerse the 4-electrode Conductivity Sensor in the standard solution.

 Set the Conductivity Span adjustment value with the or key, checking the conductivity. Conductivity multiplied by the Span adjustment value is displayed.
 Conductivity Span adjustment value: 0.700 to 1.300

⁽⁸⁾ Press the **E** key.

Conductivity Span adjustment value will be registered, and the unit will revert to Conductivity/ Temperature Display Mode.

9.2 Temperature Calibration Mode

To calibrate a temperature, set a temperature calibration value.

If aFF (No temperature compensation) is selected in [Temperature compensation method (p.30)], Temperature calibration mode is not available.

The unit cannot enter Temperature calibration mode in the following cases: • When $\angle \Box \Box = i$ (Lock 1), $\angle \Box \Box \Xi^{2}$ (Lock 2) or $\angle \Box \Box \Xi^{2}$ (Lock 3) is selected in [Set value lock (p.31)].

When a sensor cannot be set at the exact location where measurement is desired, the resulting measured temperature may deviate from the temperature in the desired location. In this case, the desired temperature can be set for the desired location by setting a temperature calibration value. However, it is effective within the input rated range regardless of the temperature calibration value. Temperature after calibration = Current temperature + (Temperature calibration value) (e.g.) When current temperature is 23.5° C,

If temperature calibration value is set to 1.5° C: $23.5 + (1.5) = 25.0^{\circ}$ C If temperature calibration value is set to -1.5° C: $23.5 + (-1.5) = 22.0^{\circ}$ C

The following outlines the procedure for temperature calibration.

(1) Press and hold the 🛆 key and 🔘 key (in that order) together for 3 seconds in Conductivity/ Temperature Display Mode.

The unit proceeds to Temperature calibration mode, and indicates the following.

Display	Indication
Conductivity Display	לם and temperature are indicated alternately.
Temperature Display	Temperature calibration value

② Set a temperature calibration value with the △ or ▽ key, checking temperature. Setting range: -10.0 to 10.0°C

③ Press the 📰 key.

Temperature calibration is complete, and the unit reverts to Conductivity/Temperature Display Mode.

9.3 Transmission Output 1 Adjustment Mode

Fine adjustment of Transmission output 1 is performed.

WIL-102-ECH is adjusted at the factory, however, differences may occur between the indication value of the connected equipment (recorders, etc.) and output value of this instrument. In this case, perform Transmission output 1 Zero and Span adjustments. Transmission output 1 adjustment mode is available when Transmission output 1 (TA option) or

Transmission output 2 (TA2 option) is ordered.

The unit cannot enter Transmission output 1 Zero adjustment mode in the following cases:

- During Conductivity Zero or Span adjustment, or temperature calibration
- When $L \Box c \downarrow$ (Lock 1), $L \Box c c \downarrow$ (Lock 2) or $L \Box c J$ (Lock 3) is selected in [Set value lock (p.31)]

The following outlines the procedure for Transmission output 1 adjustment.

 Press and hold the △ key and [™] key (in that order) together for 3 seconds in Conductivity/Temperature Display Mode.

The unit enters Transmission output 1 Zero adjustment mode, and indicates the following.

Display	Indication
Conductivity Display	RJE I
Temperature Display	Transmission output 1 Zero adjustment value

② Set a Transmission output 1 Zero adjustment value with the △ or ▽ key, while viewing the value indicated on the connected equipment (recorders, etc.). Setting range: ±5.00% of Transmission output 1 span

3 Press the **E** key.

The unit enters Transmission output 1 Span adjustment mode, and indicates the following.

Display	Indication
Conductivity Display	RJ5 /
Temperature Display	Transmission output 1 Span adjustment value

- ④ Set a Transmission output 1 Span adjustment value with the △ or ▽ key, while viewing the value indicated on the connected equipment (recorders, etc.).
 Setting range: ±5.00% of Transmission output 1 span
- $^{(5)}$ Press the \square key.

The unit reverts to Transmission output 1 Zero adjustment mode. Repeat steps 2 to 5 if necessary.

⁽⁶⁾ To finish Transmission output 1 adjustment, press the ^(E)/_{E=} key in Transmission output 1 Span adjustment mode.

The unit reverts to Conductivity/Temperature Display Mode.

9.4 Transmission Output 2 Adjustment Mode

Fine adjustment of Transmission output 2 is performed.

WIL-102-ECH is adjusted at the factory, however, differences may occur between the indication value of the connected equipment (recorders, etc.) and output value of this instrument.

In this case, perform Transmission output 2 Zero and Span adjustments.

Transmission output 2 adjustment mode is available only when Transmission output 2 (TA2 option) is ordered.

The unit cannot enter Transmission output 2 Zero adjustment mode in the following cases:

- During Conductivity Zero or Span adjustment, or temperature calibration
- When $L \Box c i$ (Lock 1), $L \Box c c i$ (Lock 2) or $L \Box c i j$ (Lock 3) is selected in [Set value lock (p.31)]

The following outlines the procedure for Transmission output 2 adjustment.

The unit enters Transmission output 2 Zero adjustment mode, and indicates the following.

Display	Indication
Conductivity Display	RJEZ
Temperature Display	Transmission output 2 Zero adjustment value

② Set a Transmission output 2 Zero adjustment value with the or key, while viewing the value indicated on the connected equipment (recorders, etc.). Setting range: ±5.00% of Transmission output 2 span

3 Press the **E** key.

The unit enters Transmission output 2 Span adjustment mode, and indicates the following.

Display Indication	
Conductivity Display	8342
Temperature Display	Transmission output 2 Span adjustment value

- ④ Set a Transmission output 2 Span adjustment value with the △ or ▽ key, while viewing the value indicated on the connected equipment (recorders, etc.).
 Setting range: ±5.00% of Transmission output 2 span
- $^{(5)}$ Press the \square key.

The unit reverts to Transmission output 2 Zero adjustment mode. Repeat steps (2) to (5) if necessary.

⁽⁶⁾ To finish Transmission output 2 adjustment, press the ^(K) key in Transmission output 2 Span adjustment mode.

The unit reverts to Conductivity/Temperature Display Mode.

10. Measurement

10.1 Starting Measurement

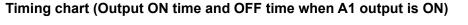
After mounting to the control panel, wiring, setup and calibration are complete, turn the power to the instrument ON.

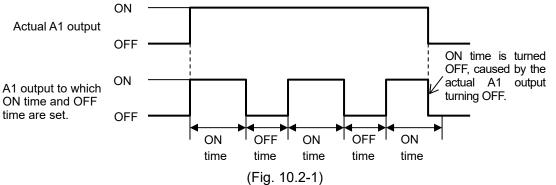
For approximately 4 seconds after the power is switched ON, the input characters are indicated on the Conductivity Display and Temperature Display. See (Table 10.1-1).

Display	Character	Me	asurement Unit			
Conductivity Display	cont		Conductivity (mS/cm, μ S/cm)			
	51	Conductivity (S/m, m	,			
	'5 <i>E R</i>	Seawater salinity (%)				
	58LF	NaCl salinity (%)				
	Г <i>ач</i> ы	TDS conversion (g/L, mg/L)				
Display	Character	Input Temperature Specification (*)	Selection Item in [Pt100 Input Wire Type] (p.30)			
Temperature Display	PF 2	D#4.00	<i>F'I</i> : 2-wire type			
	PF[]]3	- Pt100	<i>₽Г</i> ⊡∃: 3-wire type			
	PF 10	Pt1000				

(*) This input temperature specification was specified at the time of ordering.

During this time, all outputs are in OFF status, and the LED indicators except PWR Indicator are unlit. Measurement will then start, indicating the item selected in [Display selection (p.34)].


10.2 A Output


When $\mathcal{E}_{\mathcal{A}}\mathcal{L}$ (Conductivity input low limit action), $\mathcal{E}_{\mathcal{A}}\mathcal{H}$ (Conductivity input high limit action), $\mathcal{E}_{\mathcal{A}}\mathcal{H}\mathcal{L}$ (Temperature input low limit action), or $\mathcal{E}_{\mathcal{A}}\mathcal{H}\mathcal{H}$ (Temperature input high limit action) is selected in [A11, A12, A21, A22 type (pp. 22, 23)], the A output is turned ON if the measured value exceeds or drops below the A value.

When $\mathcal{E}_{\mathcal{C}}\mathcal{H}\mathcal{L}$ (Conductivity input High/Low limits independent action), $\mathcal{E}_{\mathcal{O}}\mathcal{H}\mathcal{L}$ (Temperature input High/Low limits independent action) is selected in [A11, A12, A21, A22 type (pp. 22, 23)], the A output is turned ON if the measured value exceeds the A High/Low limits independent action upper side span, or drops below the lower side span.

A1 or A2 output is turned ON depending on the selection in [A1/A2 output allocation (p.35)] and in [Output ON time/OFF time when A1/A2 output is ON (pp. 35, 36)].

If Output ON time and OFF time are set, A1 or A2 output can be turned ON/OFF in a configured cycle when A1 or A2 output is ON. (Fig. 10.2-1)

A output status can be read by reading Status flag 1 (A11, A12, A21, A22 output flag bit) in Serial communication.

A output status, when input errors occur, differs depending on the selection in [A output when input errors occur (p.29)].

- If $\square F F \square$ (Disabled) is selected, A \square output and A \square output status will be turned OFF when input errors occur.
- If *are* (Enabled) is selected, A output and A output status will be maintained when input errors occur.

10.3 Conductivity Input Error Alarm

Conductivity input error alarm is used for detecting actuator trouble.

Even if conductivity input error alarm time (pp. 37, 38) has elapsed, and if conductivity input does not become higher than conductivity input error alarm band (pp. 37, 38), the unit assumes that actuator trouble has occurred, and writes Status flag 2.

In Serial communication, status can be read by reading Status flag 2 (A1, A2 conductivity input error alarm output flag bit).

Conductivity input error alarm is disabled during Conductivity Zero or Span adjustment.

Conductivity input error alarm is enabled only when $\mathcal{E}_{\mathcal{L}}\mathcal{L}$ (Conductivity input low limit action) or $\mathcal{E}_{\mathcal{L}}\mathcal{H}$ (Conductivity input high limit action) is selected in [A11, A12, A21, A22 type (pp.22, 23)].

10.4 Error Output

If $\mathcal{E} \subset \mathcal{A}^{\mathcal{F}}$ (Error output) is selected in [A11, A12, A21, A22 type (pp. 22, 23)], the A1 or A2 output will be turned ON when error type is "Error". See (Table 10.6-1).

10.5 Fail Output

If $FRL \subseteq$ (Fail output) is selected in [A11, A12, A21, A22 type (pp. 22, 23)], the A1 or A2 output will be turned ON when error type is "Fail". See (Table 10.6-1).

10.6 Error Code during Measurement

For Temperature sensor error or outside temperature compensation range during measurement, their corresponding error codes flash on the Temperature Display as shown below in (Table 10.6-1).

(10010 101					
Error Code	Error Type	Error Contents	Description	Occurrence	
E-01	Fail	Temperature sensor burnout	Temperature sensor lead wire is burnt out.		
E-02	Fail	Temperature sensor short-circuited	Temperature sensor lead wire is short-circuited.	When measuring	
E-03	Error	Outside temperature compensation range	Measured temperature has exceeded 110.0℃.	or calibrating	
E-04	Error	Outside temperature compensation range	Measured temperature is less than 0.0℃.		

(Table 10.6-1)

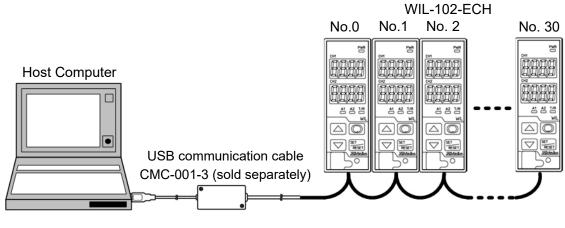
10.7 Transmission Output 1 and 2

Converting conductivity or temperature to analog signal every input sampling period, outputs in current. (Factory default: Transmission output 1: Conductivity, Transmission output 2: Temperature)

If $\Box \not \vdash \not \vdash \Box$ (No temperature compensation) is selected in [Temperature compensation method (p.30)], and if $\not \vdash \overleftarrow{\Box} \not \vdash \overleftarrow{\Box} \not \vdash$ (Temperature transmission) is selected in [Transmission output 1 or 2 type (p.32)], Transmission output 1 or 2 value differs depending on the selection in [Temperature Display when no temperature compensation (p.34)].

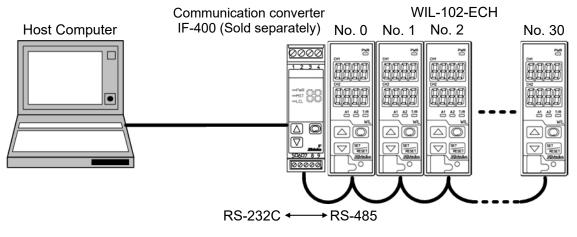
- If ロケチロ (Unlit) or 'っ ロロ (Reference temperature) is selected, the value set in [Reference temperature (p.30)] will be output.
- If PB (Measured value) is selected, the measured value will be output.

If Transmission output 1 high limit and low limit are set to the same value, Transmission output 1 will be fixed at 4 mA DC.


If Transmission output 2 high limit and low limit are set to the same value, Transmission output 2 will be fixed at 4 mA DC.

Resolution	12000
Current	4 to 20 mA DC (Load resistance: Max 550 Ω)
Output accuracy	Within $\pm 0.3\%$ of Transmission output 1 or 2 span

11. Communication


11.1 System Configuration Example

When Using USB Communication Cable CMC-001-3 (sold separately)

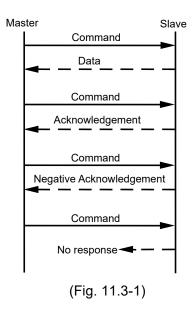
(Fig. 11.1-1)

When Using Communication Converter IF-400 (sold separately)

(Fig. 11.1-2)

11.2 Setting Method of the Conductivity Meter

Communication parameters can be set in the Basic Function Group. To enter the Basic Function Group, follow the procedure below.


- ① a.f.E.r Press the 🔘 key 3 times in Conductivity/Temperature Display Mode.
- $2 c \bar{n} c L$ Press the Est key twice. "Communication protocol" will appear.
- ③ Set each item. (Use the \bigtriangleup or \bigtriangledown key for settings, and register the selection/value with the

Character	Setting Item, Function, Setting Range	Factory Default
cā41	Communication protocol	Shinko protocol
noñL	Selects communication protocol.	
	Selection item:	
	תֵּהָהָלֵ : Shinko protocol	
	್ಷದೆ ^B : MODBUS ASCII mode	
	nadr : MODBUS RTU mode	
cāna	Instrument number	0
	• Sets the instrument number.	
	The instrument numbers should be set one by one when	-
	connected in Serial communication, otherwise communicSetting range: 0 to 95	cation is impossible.
c.54P	Communication speed	9600 bps
<u> </u>	 Selects a communication speed equal to that of the host 	
	Selection item:	
	56666666666666666666666666666666666666	
	□ /92 : 19200 bps	
	[]∃문닉 : 38400 bps	
e AFT	Data bit/Parity	7 bits/Even
7E8n	Selects data bit and parity.	
	Selection item:	
	ອີດ໑ຉ : 8 bits/No parity	
	יתבה : 7 bits/No parity	
	8EBn : 8 bits/Even	
	길든님ㅠ : 7 bits/Even	
	පිපස්ස් : 8 bits/Odd	
	ੀਰਰੇਰੇ : 7 bits/Odd	
5745 	Stop bit	1 bit
	Selects the stop bit.	
	• Selection item:	
	\vec{z} : 2 bits	

Press the set with the set of t

11.3 Communication Procedure

Communication starts with command transmission from the host computer (hereafter Master) and ends with the response of the WIL-102-ECH (hereafter Slave).

Response with Data

When the master sends the reading command, the slave responds with the corresponding set value or current status.

Acknowledgement

When the master sends the setting command, the slave responds by sending acknowledgement after the processing is terminated.

Negative Acknowledgement

When the master sends a non-existent command or value out of the setting range, the slave returns a negative acknowledgement.

No Response

The slave will not respond to the master in the following cases:

- Global address (Shinko protocol) is set.
- Broadcast address (MODBUS protocol) is set.
- Communication error (framing error, parity error)
- Checksum error (Shinko protocol), LRC discrepancy (MODBUS ASCII mode), CRC-16 discrepancy (MODBUS RTU mode)

Communication Timing of the RS-485

Master Side (Take note while programming)

When the master starts transmission through the RS-485 communication line, the master is arranged so as to provide an idle status (mark status) transmission period of 1 or more characters before sending the command to ensure synchronization on the receiving side.

Set the program so that the master can disconnect the transmitter from the communication line within a 1-character transmission period after sending the command in preparation for reception of the response from the slave.

To avoid collision of transmissions between the master and the slave, send the next command after carefully checking that the master has received the response.

If a response to the command is not returned due to communication errors, set the Retry Processing to send the command again. (It is recommended to execute Retry twice or more.)

Slave Side

When the slave starts transmission through the RS-485 communication line, the slave is arranged so as to provide an idle status (mark status) transmission period of 1 or more characters before sending the response to ensure synchronization on the receiving side.

The slave is arranged so as to disconnect the transmitter from the communication line within a 1-character transmission period after sending the response.

11.4 Shinko Protocol

11.4.1 Transmission Mode

Shinko protocol is composed of ASCII. Hexadecimal (0 to 9, A to F), which is divided into high order (4-bit) and low order (4-bit) out of 8-bit binary data in command is transmitted as ASCII characters. Data format Start bit: 1 bit

Start bit: 1 bit Data bit: 7 bits Parity: Even Stop bit: 1 bit

Error detection: Checksum

11.4.2 Command Configuration

All commands are composed of ASCII.

The data (set value, decimal number) is represented by hexadecimal numbers.

The negative numbers are represented in 2's complement.

Numerals written below the command represent number of characters.

(1) Setting Command

Header (02H)	Address	Sub address (20H)	Command type (50H)	Data item	Data	Checksum	Delimiter (03H)
1	1	1	1	4	4	2	1
(Fig. 11.4.2-1)							

(2) Reading Command

Header (02H)	Address	Sub address (20H)	Command type (20H)	Data item	Checksum	Delimiter (03H)
1	1	1	1	4	2	1
	/	44400				

(Fig. 11.4.2-2)

(3) Response with Data

	Header (06H)	Address	Sub address (20H)	Command type (20H)	Data item	Data	Checksum	Delimiter (03H)
	1	1	1	1	4	4	2	1
(Fig. 11.4.2-3)								

(4) Acknowledgement

Header (06H)	Address	Checksum	Delimiter (03H)		
1	1	2	1		
	(Fig. 11.4.2-4)				

(5) Negative Acknowledgement

Header	Address	Error	Checksum	Delimiter
(15H)	Audress	code	Checksum	(03H)
1	1	1	2	1
	/ - ·			

Header:

(Fig. 11.4.2-5) Control code to represent the beginning of the command or the response.

ASCII codes are used.

Setting command, Reading command: STX (02H) fixed

Response with data, Acknowledgement: ACK (06H) fixed

Negative acknowledgement: NAK (15H) fixed

Instrument Number (Address): Numbers by which the master discerns each slave.

Instrument numbers 0 to 94 and Global address 95.

ASCII codes (20H to 7FH) are used by adding 20H to instrument numbers 0 to 95 (00H to 5FH).

95 (7FH) is called Global address, which is used when the same command is sent to all the slaves connected. However, the response is not returned.

Sub Address: 20H fixed

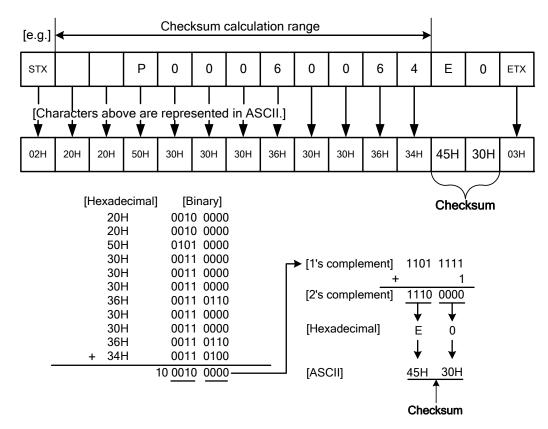
Command Type: Code to discern Setting command (50H) and Reading command (20H).

Data Item:	Classification of the command object. Composed of 4-digit hexadecimal numbers, using ASCII. (Refer to "11.6. Communication Command Table".) (pp.55 to 63)
Data:	The contents of data (set value) differ depending on the setting command. Composed of 4-digit hexadecimal numbers, using ASCII. (Refer to "11.6. Communication Command Table".) (pp.55 to 63)
Checksum:	2-character data to detect communication errors. (Refer to "11.4.3 Checksum Calculation".) (p.50)
Delimiter:	Control code to represent the end of command. ASCII code ETX (03H) fixed
Error Code:	 Represents an error type, using ASCII. 1 (31H)Non-existent command 2 (32H)Not used 3 (33H)Setting outside the setting range 4 (34H)Status unable to be set (e.g. During calibration mode) 5 (35H)During setting mode by keypad operation

11.4.3 Checksum Calculation

Checksum is used to detect receiving errors in the command or data. Set the program for the master side as well to calculate the checksum of the response data from the slaves so that communication errors can be checked.

The ASCII code (hexadecimal) corresponding to the characters which range from the address to that before the checksum is converted to binary notation, and the total value is calculated. The lower one byte of the total value is converted to 2's complement, and then to hexadecimal numbers, that is, ASCII code for the checksum.


• 1's complement: Reverse each binary bit. 0 will become 1 and vice versa.

• 2's complement: Add 1 to 1's complement.

Checksum Calculation Example

A11 value: 1.00 (0064H)

Address (instrument number): 0 (20H)

(Fig. 11.4.3-1)

11.5 MODBUS Protocol

11.5.1 Transmission Mode

There are 2 transmission modes (ASCII and RTU) in MODBUS protocol.

ASCII Mode

Hexadecimal (0 to 9, A to F), which is divided into high order (4-bit) and low order (4-bit) out of 8-bit binary data in command is transmitted as ASCII characters.

Data format Start bit: 1 bit Data bit: 7 bits (8 bits) (Selectable) Parity: Even (No parity, Odd) (Selectable) Stop bit: 1 bit (2 bits) (Selectable)

Error detection : LRC (Longitudinal Redundancy Check)

RTU Mode

8-bit binary data in command is transmitted as it is.

Data format Start bit: 1 bit

Data bit: 8 bits

Parity: No parity (Even, Odd) (Selectable) Stop bit: 1 bit (2 bits) (Selectable)

Error detection: CRC-16 (Cyclic Redundancy Check)

11.5.2 Data Communication Interval

ASCII Mode

Max.1 second of interval between ASCII mode characters

RTU Mode

Communication speed 9600 bps, 19200 bps:

To transmit continuously, an interval between characters which consist of one message, must be within 1.5-character transmission times.

Communication speed 38400 bps:

To transmit continuously, an interval between characters which consist of one message, must be within 750 μ s.

If an interval lasts longer than 1.5-character transmission times or 750 μ s, the WIL-102-ECH assumes that transmission from the master is finished, which results in a communication error, and will not return a response.

11.5.3 Message Configuration

ASCII Mode

ASCII mode message is configured to start by Header [: (colon)(3AH)] and end by Delimiter [CR (carriage return) (0DH) + LF (Line feed)(0AH)].

Header	Slave	Function	Data	Error Check	Delimiter	Delimiter
(:)	Address	Code	Dala	LRC	(CR)	(LF)

RTU Mode

Communication speed 9600 bps, 19200 bps: RTU mode is configured to start after idle time is processed for more than 3.5-character transmissions, and end after idle time is processed for more than 3.5-character transmissions.

Communication speed 38400 bps: RTU mode is configured to start after idle time is processed for more than 1.75 ms, and end after idle time is processed for more than 1.75 ms.

3.5 Idle	Slave	Function	Dete	Error Check	3.5 Idle
Characters	Address	Code	Data	CRC-16	Characters

(1) Slave Address

Slave address is an individual instrument number on the slave side, and is set within the range 0 to 95 (00H to 5FH).

The master identifies slaves by the slave address of the requested message.

The slave informs the master which slave is responding to the master by placing its own address in the response message.

Slave address 00H (Broadcast address) can identify all the slaves connected. However, slaves do not respond.

(2) Function Code

The function code is the command code for the slave to undertake the following action types. **(Table 11.5.3-1)**

Function Code	Contents
03 (03H)	Reading the set value and information from slaves
06 (06H)	Setting to slaves

Function code is used to discern whether the response is normal (acknowledgement) or if any error (negative acknowledgement) has occurred when the slave returns the response message to the master. When acknowledgement is returned, the slave simply returns the original function code.

When negative acknowledgement is returned, the MSB of the original function code is set as 1 for the response.

(For example, when the master sends request message setting 10H to the function code by mistake, slave returns 90H by setting the MSB to 1, because the former is an illegal function.)

For negative acknowledgement, the exception codes below (Table 11.5.3-2) are set to the data of the response message, and returned to the master in order to inform it of what kind of error has occurred.

(Table 11.5.3-2)

Exception Code	Contents
1 (01H)	Illegal function (Non-existent function)
2 (02H)	Illegal data address (Non-existent data address)
3 (03H)	Illegal data value (Value out of the setting range)
17 (11H)	Shinko protocol error code 4 [Status unable to be set (e.g.) During calibration mode]
18 (12H)	Shinko protocol error code 5 (During setting mode by keypad operation)

(3) Data

Data differs depending on the function code.

A request message from the master is composed of data item, amount of data and setting data. A response message from the slave is composed of the byte count, data and exception codes in negative acknowledgements, corresponding to the request message. Effective range of data is -32768 to 32767 (8000H to 7FFFH).

(4) Error Check

ASCII Mode

After calculating LRC (Longitudinal Redundancy Check) from the slave address to the end of data, the calculated 8-bit data is converted to two ASCII characters, and are appended to the end of message.

How to Calculate LRC

- ① Create a message in RTU mode.
- 2 Add all the values from the slave address to the end of data. This is assumed as X.
- ^③ Make a complement for X (bit reverse). This is assumed as X.
- 4 Add a value of 1 to X. This is assumed as X.
- ^⑤ Set X as an LRC to the end of the message.
- ⁶ Convert the whole message to ASCII characters.

RTU Mode

After calculating CRC-16 (Cyclic Redundancy Check) from the slave address to the end of the data, the calculated 16-bit data is appended to the end of message in sequence from low order to high order.

How to calculate CRC-16

In the CRC-16 system, the information is divided by the polynomial series. The remainder is added to the end of the information and transmitted. The generation of a polynomial series is as follows. (Generation of polynomial series: $X^{16} + X^{15} + X^2 + 1$)

- $\overset{\frown}{1}$ Initialize the CRC-16 data (assumed as X) (FFFFH).
- ² Calculate exclusive OR (XOR) with the 1st data and X. This is assumed as X.
- ③ Shift X one bit to the right. This is assumed as X.
- ⁽⁴⁾ When a carry is generated as a result of the shift, XOR is calculated by X of ⁽³⁾ and the fixed value (A001H). This is assumed as X. If a carry is not generated, go to step ⁽⁵⁾.
- (5) Repeat steps (3) and (4) until shifting 8 times.
- $^{\textcircled{6}}$ XOR is calculated with the next data and X. This is assumed as X.
- O Repeat steps 3 to 5.
- (8) Repeat steps (3) to (5) up to the final data.
- ⁽⁹⁾ Set X as CRC-16 to the end of message in sequence from low order to high order.

11.5.4 Message Example

ASCII Mode

Numerals written below the command represent the number of characters.

① Reading [Slave address 1, Data item 0080H (Conductivity)]

• A request message from the master

Amount of data means how many data items are to be read. It is fixed as (30H 30H 30H 31H).

Header	Slave	Function	Data Item Amount of Data		Error Check	Delimiter
	Address	Code	[0080H]	[0001H]	LRC	
(3AH)	(30H 31H)	(30H 33H)	(30H 30H 38H 30H)	(30H 30H 30H 31H)	(37H 42H)	(0DH 0AH)
1	2	2	4	4	2	2

• Response message from the slave in normal status [1.00 mS/cm (0064H)]

The response byte count means the byte count of the data which has been read.

It is	fixed	asi	(30H	32H))
1110	IIAGU	u0 (

	1	/				
Header	Slave	Function	Response Byte Count	Data	Error Check	Delimiter
	Address	Code	[02H]	[0064H]	LRC	
(3AH)	(30H 31H)	(30H 33H)	(30H 32H)	(30H 30H 36H 34H)	(39H 36H)	(0DH 0AH)
1	2	2	2	4	2	2

• Response message from the slave in exception (error) status (When a data item is incorrect) The function code MSB is set to 1 for the response message in exception (error) status (83H). The exception code 02H (Non-existent data address) is returned (error)

Header Slave		Function	Exception Code	Error Check	Delimiter				
	Address	Code	[02H]	LRC					
(3AH)	(30H 31H)	(38H 33H)	(30H 32H)	(37H 41H)	(0DH 0AH)				
1	2	2	2	2	2				

⁽²⁾ Setting [Slave address 1, Data item 0006H (A11 value)]

• A request message from the master [When A11 value is set to 1.00 (0064H)]

	<u> </u>				/-	
Header	Slave	Function	Data Item	Data	Error Check	Delimiter
	Address	Code	[0006H]	[0006H] [0064H]		
(3AH)	(30H 31H)	(30H 36H)	(30H 30H 30H 36H)	(30H 30H 36H 34H)	(38H 44H)	(0DH 0AH)
1	2	2	4	4	2	2

• Response message from the slave in normal status

1 toop on o								
Header	Slave	Function	Data Item	Data	Error Check	Delimiter		
	Address	Code	[0006H]	[0064H]	LRC			
(3AH)	(30H 31H)	(30H 36H)	(30H 30H 30H 36H)	(30H 30H 36H 34H)	(38H 44H)	(0DH 0AH)		
1	2	2	4	4	2	2		

• Response message from the slave in exception (error) status (When a value out of the setting range is set)

The function code MSB is set to 1 for the response message in exception (error) status (86H).

The excep	The exception code 03H (value out of the setting range) is returned (error).									
Header	Slave	Function	Exception Code	Error Check	Delimiter					
	Address	Code	[03H]	LRC						
(3AH)	(30H 31H)	(38H 36H)	(30H 33H)	(37H 36H)	(0DH 0AH)					
1	2	2	2	2	2					

RTU Mode

Numerals written below the command represent the number of characters.

① Reading [Slave address 1, Data item 0080H (Conductivity)]

• A request message from the master

Amount of data means how many data items are to be read. It is fixed as (0001H).

3.5 Idle Characters	Slave Address (01H)	Function Code (03H)	Data Item (0080H)	Amount of Data (0001H)	Error Check CRC-16 (85E2H)	3.5 Idle Characters
	1	1	2	2	2	

• Response message from the slave in normal status [1.00 mS/cm (0064H)]

The response byte count means the byte count of the data which has been read. It is fixed as (02H).

3.5 Idle Characters	Slave Address (01H)	Function Code (03H)	Response Byte Count (02H)	Data (0064H)	Error Check CRC-16 (B9AFH)	3.5 Idle Characters
	1	1	1	2	2	

• Response message from the slave in exception (error) status (When data item is incorrect). The function code MSB is set to 1 for the response message in exception (error) status (83H). The exception code (02H: Non-existent data address) is returned (error).

3.5 Idle Characters	Slave Address (01H)	Function Code (83H)	Exception Code (02H)	Error Check CRC-16 (C0F1H)	3.5 Idle Characters	
	1	1	1	2		-

② Setting [Slave address 1, Data item 0006H (A11 value)]

• A request message from the master [When A11 value is set to 1.00 (0064H)]

3.5 Idle Characters	Slave Address (01H)	Function Code (06H)	Data Item (0006H)	Data (0064H)	Error Check CRC-16 (6820H)	3.5 Idle Characters	
	1	1	2	2	2		

• Response message from the slave in normal status

3.5 Idle Characters	Slave Address (01H)	Function Code (06H)	Data Item (0006H)	Data (0064H)	Error Check CRC-16 (6820H)	3.5 Idle Characters
	1	1	2	2	2	

• Response message from the slave in exception (error) status (When a value out of the setting range is set)

The function code MSB is set to 1 for the response message in exception (error) status (86H). The exception code (03H: Value out of the setting range) is returned (error).

3.5 Idle Characters	Slave Address (01H)	Function Code (86H)	Exception Code (03H)	Error Check CRC-16 (0261H)	3.5 Idle Characters	
	1	1	1	2		

11.6 Communication Command Table

11.6.1 Notes about Setting/Reading Command

- The data (set value, decimal) is converted to hexadecimal numbers. A negative number is represented in 2's complement.
- When connecting multiple slaves, the address (instrument number) must not be duplicated.
- Data item 0200H to 0209H (User save area 1 to 10) can be read or set in 1 word units.
- Effective range of data is -32768 to 32767 (8000H to 7FFFH).
- MODBUS protocol uses Holding Register addresses. The Holding Register addresses are created as follows. A Shinko command data item is converted to decimal number, and the offset of 40001 is added. The result is the Holding Register address.

Using Data item 0001H (Sensor cell constant) as an example:

- Data item in the sending message is 0001H, however, MODBUS protocol Holding Register address is 40002 (1 + 40001).
- Even if options are not ordered, setting or reading via software communication will be possible. Command contents of the A11, A12, A21, A22 will function, however, Transmission output 1 and 2 command contents will not function.

(1) Setting Command

- Up to 1,000,000 (one million) entries can be stored in non-volatile IC memory. If the number of settings exceeds the limit, the data will not be saved. So, ensure the set values are not frequently changed via software communication. (If a value set via software communication is the same as the value before the setting, the value will not be written in non-volatile IC memory.)
- Be sure to select Lock 3 when changing the set value frequently via software communication. If Lock 3 is selected, all set values – except Sensor cell constant, Measurement unit, Measurement range, Conductivity Zero and Span adjustment values, Temperature calibration value, Transmission output 1 Zero and Span adjustment values, Transmission output 2 Zero and Span adjustment values – can be temporarily changed. However, they revert to their previous value after the power is turned off because they are not saved in the non-volatile IC memory. Do not change setting items (A11, A12, A21 and A22 types). If they are changed, they will affect other setting items.
- Setting range of each item is the same as that of keypad operation.
- When the data (set value) has a decimal point, a whole number (hexadecimal) without a decimal point is used.
- If A11, A12, A21 or A22 type is changed at Data item 0005H (A11 type), 0050H (A12 type), 0051H (A21 type) or 052H (A22 type), the A11, A12, A21 or A22 value will default to 0.00 or 0.0. The output status of A11, A12, A21 or A22 will also be initialized.
- Settings via software communication are possible while in Set value lock status.
- Communication parameters such as Instrument Number, Communication Speed of the slave cannot be set by software communication. They can only be set via the keypad. (p.47)
- When sending a command by Global address [95 (7FH), Shinko protocol] or Broadcast address [00H, MODBUS protocol], the same command is sent to all the slaves connected. However, the response is not returned.

(2) Reading Command

• When the data (set value) has a decimal point, a whole number (hexadecimal) without a decimal point is used for a response.

11.6.2 Setting/Reading Command

Shinko Command Type	MODBUS	Data Item		Data	
50H/20H	06H/03H	0001H	Sensor cell constant	0000H: 1.0/cm 0001H: 10.0/cm	
50H/20H	06H/03H	0002H	Cell constant correction value	Set value	
50H/20H	06H/03H	0003H	Measurement unit	0000H: Conductivity (mS/cm, µS/cm) 0001H: Conductivity (S/m, mS/m) 0002H: Seawater salinity (%) 0003H: NaCl salinity (%) 0004H: TDS conversion (g/L, mg/L)	
50H/20H	06H/03H	0004H	Measurement range	When 1.0/cm is selected in [Sensor cell constant], and Conductivity (mS/cm, μS/cm) in [Measurement unit]: 000H: 0.00 to 20.00 mS/cm 0001H: 0.00 to 200.0 mS/cm 0002H: 0.0 to 500.0 mS/cm 0003H: 0 to 5000 mS/cm 0004H: 0.000 to 5.000 mS/cm 0005H: 0.000 to 5.000 mS/cm 0005H: 0.000 to 50.00 mS/cm 0006H: 0.00 to 50.00 mS/cm 0007H: 0 to 2000 μS/cm 0008H: 0 to 5000 μS/cm 0008H: 0 to 5000 mS/cm 00011: 0.000 to 2.000 S/m 000111: 0.000 to 50.00 S/m 000211: 0.00 to 50.00 g/L 000211: 0.00 to 20.00 g/L 000211: 0 to 5000 mg/L	

Shinko Command			Data Item	Data	
Туре 50H/20H	Code 06H/03H	0005H	A11 type	When 10.0/cm is selected in [Sensor cell constant], and TDS conversion (g/L, mg/L) in [Measurement unit]: 0000H: 0 to 200 g/L 0001H: 0 to 500 g/L 0002H: 0 to 2000 g/L When Seawater salinity (%) is selected in [Measurement unit]: 0000H: 0.00 to 4.00% When NaCl salinity (%) is selected in [Measurement unit]: 0000H: 0.00 to 4.00% When NaCl salinity (%) is selected in [Measurement unit]: 0000H: 0.00 to 20.00% 0000H: No action 0002H: Conductivity input low limit action 0002H: Conductivity input high limit action 0002H: Temperature input low limit action 0003H: Temperature input high limit action 0005H: Error output 0006H: Fail output 0007H: Conductivity input High/Low limits independent action 0008H: Temperature input High/Low	
50H/20H	06H/03H	0006H	A11 value	limits independent action Set value	
50H/20H	06H/03H	0007H	A11 ON side	Set value	
50H/20H	06H/03H	0008H	A11 ON delay time	Set value	
50H/20H	06H/03H	0009H	A11 OFF delay time	Set value	
50H/20H	06H/03H	000AH	Conductivity input filter time constant	Set value	
50H/20H	06H/03H	000BH	TDS conversion factor	Set value	
50H/20H	06H/03H	0020H	Temperature compensation method	0000H: Temperature characteristics of NaCl 0001H: Temperature coefficient (%/°C) and a randomly selected reference temperature. 0002H: No temperature compensation	
50H/20H	06H/03H	0021H	Temperature coefficient	Set value	
50H/20H	06H/03H	0022H	Reference temperature	Set value	
50H/20H	06H/03H	0023H	Temperature input decimal point place	0000H: No decimal point 0001H: 1 digit after decimal point	
50H/20H	06H/03H	0029H	Temperature input filter time constant	Set value	
50H/20H	06H/03H	0030H	Set value lock	0000H: Unlock 0001H: Lock 1 0002H: Lock 2 0003H: Lock 3	
50H/20H	06H/03H	0031H	Transmission output 1 type	0000H: Conductivity transmission 0001H: Temperature transmission	
50H/20H	06H/03H	0032H	Transmission output 1 high limit	Set value	
50H/20H	06H/03H	0033H	Transmission output 1 low limit	Set value	
50H/20H	06H/03H	0034H	Auto-light function	0000H: Disabled 0001H: Enabled	

Shinko Command Type	MODBUS Function Code		Data Item	Data		
50H/20H	06H/03H	0035H	Display selection	DataConductivity DisplayTemperature Display0000HConductivityTemperature0001HConductivityNo indication0002HNo indicationTemperature0003HNo indicationNo indication		
50H/20H	06H/03H	0036H	Indication time	Set value		
50H	06H	0030H 0040H	Temperature calibration mode	0000H: Conductivity/Temperature Display Mode 0001H: Temperature calibration mode		
50H/20H	06H/03H	0041H	Temperature calibration value	Set value		
50H	06H	0042H	Conductivity calibration mode	0000H: Conductivity/Temperature Display Mode 0001H: Conductivity calibration Zero adjustment mode 0002H: Conductivity calibration Span adjustment mode		
50H/20H	06H/03H	0043H	Conductivity Zero adjustment value	Set value		
50H/20H	06H/03H	0044H	Conductivity Span adjustment value	Set value		
50H/20H	06H/03H	0045H	A contract output when input errors occur	0000H: Enabled 0001H: Disabled		
50H/20H	06H/03H	0046H	Cable length correction	Set value		
50H/20H	06H/03H	0047H	Cable cross-section area	Set value		
50H/20H	06H/03H	0048H	Output ON time when A1 output is ON	Set value		
50H/20H	06H/03H	0049H	Output OFF time when A1 output is ON Output ON time	Set value		
50H/20H 50H/20H	06H/03H 06H/03H	004AH 004BH	when A2 output is ON Output OFF time	Set value		
50H/20H	06H/03H	004BH	when A2 output is ON	OH: No action		
			0 0 0 0 0 0 0 0 0 0 0 0	 001H: Conductivity input low limit action 002H: Conductivity input high limit action 003H: Temperature input low limit action 004H: Temperature input high limit action 005H: Error output 006H: Fail output 007H: Conductivity input High/Low limits independent action 008H: Temperature input High/Low limits independent action 		
50H/20H	06H/03H	0051H	0 0 0 0 0 0 0	 000H: No action 001H: Conductivity input low limit action 002H: Conductivity input high limit action 003H: Temperature input low limit action 004H: Temperature input high limit action 005H: Error output 006H: Fail output 007H: Conductivity input High/Low limits independent action 008H: Temperature input High/Low limits independent action 		

Shinko Command	MODBUS Function	Data Item		Data
Туре	Code			
50Ĥ/20H	06H/03H	0052H	A22 type	0000H: No action 0001H: Conductivity input low limit action 0002H: Conductivity input high limit action 0003H: Temperature input low limit action 0004H: Temperature input high limit action 0005H: Error output 0006H: Fail output 0006H: Fail output 0007H: Conductivity input High/Low limits independent action 0008H: Temperature input High/Low
50H/20H	06H/03H	0053H	A12 value	Set value
50H/20H	06H/03H	0054H	A21 value	Set value
50H/20H	06H/03H	0055H	A22 value	Set value
50H/20H	06H/03H	0056H	A12 ON side	Set value
50H/20H	06H/03H	0057H	A21 ON side	Set value
50H/20H	06H/03H	0058H	A22 ON side	Set value
50H/20H	06H/03H	0059H	A12 ON delay time	Set value
50H/20H	06H/03H	005AH	A21 ON delay time	Set value
50H/20H	06H/03H	005BH	A22 ON delay time	Set value
50H/20H	06H/03H	005CH	A12 OFF delay time	Set value
50H/20H	06H/03H	005DH	A21 OFF delay time	Set value
50H/20H	06H/03H	005EH	A22 OFF delay time	Set value
50H/20H	06H/03H	0068H	Conductivity input	Set value
001 // 2011	001 #0011	000011	sensor correction	
50H/20H	06H/03H	0069H	Temperature Display when no temperature compensation	0000H: Unlit 0001H: Reference temperature 0002H: Measured value
50H/20H	06H/03H	006AH	A1 output allocation	0000H: A11 type 0001H: A12 type 0002H: A21 type 0003H: A22 type 0004H: A11, A12 types 0005H: A21, A22 types 0006H: A11, A21 types 0007H: A12, A22 types 0008H: A11, A12, A21, A22 types
50H/20H	06H/03H	006BH	A2 output allocation	0000H: A11 type 0001H: A12 type 0002H: A21 type 0003H: A22 type 0004H: A11, A12 types 0005H: A21, A22 types 0006H: A11, A21 types 0007H: A12, A22 types 0008H: A11, A12, A21, A22 types
50H/20H	06H/03H	006FH	Pt100 input wire type	0000H: 2-wire type 0001H: 3-wire type
50H	06H	007FH	Key operation change flag clearing	0001H: Clear change flag

Shinko Command Type	MODBUS Function Code		Data Item	Data
50H/20H	06H/03H	0100H	A11 hysteresis type	0000H: Medium Value 0001H: Reference Value
50H/20H	06H/03H	0101H	A12 hysteresis type	0000H: Medium Value 0001H: Reference Value
50H/20H	06H/03H	0102H	A21 hysteresis type	0000H: Medium Value 0001H: Reference Value
50H/20H	06H/03H	0103H	A22 hysteresis type	0000H: Medium Value 0001H: Reference Value
50H/20H	06H/03H	0104H	A11 OFF side	Set value
50H/20H	06H/03H	0105H	A12 OFF side	Set value
50H/20H	06H/03H	0106H	A21 OFF side	Set value
50H/20H	06H/03H	0107H	A22 OFF side	Set value
50H/20H	06H/03H	010FH	Transmission output 1 status when calibrating	0000H: Last value HOLD 0001H: Set value HOLD 0002H: Measured value
50H/20H	06H/03H	0110H	Transmission output 1 value HOLD when calibrating	Set value
50H/20H	06H/03H	0111H	A1 conductivity input error alarm A⊡⊡ type	0000H: No action 0001H: A11 type 0002H: A12 type 0003H: A21 type 0004H: A22 type
50H/20H	06H/03H	0112H	A2 conductivity input error alarm A⊡⊡ type	0000H: No action 0001H: A11 type 0002H: A12 type 0003H: A21 type 0004H: A22 type
50H/20H	06H/03H	0115H	A1 conductivity input error alarm band when A . output ON	Set value
50H/20H	06H/03H	0116H	A1 conductivity input error alarm time when A output ON	Set value
50H/20H	06H/03H	0117H	A1 conductivity input error alarm band when A output OFF	Set value
50H/20H	06H/03H	0118H	A1 conductivity input error alarm time when A output OFF	Set value
50H/20H	06H/03H	0119H	A2 conductivity input error alarm band when A□□ output ON	Set value
50H/20H	06H/03H	011AH	A2 conductivity input error alarm time when A output ON	Set value
50H/20H	06H/03H	011BH	A2 conductivity input error alarm band when A output OFF	Set value
50H/20H	06H/03H	011CH	A2 conductivity input error alarm time when A . output OFF	Set value

Shinko Command Type	MODBUS Function Code		Data Item	Data	
50H/20H	06H/03H	0125H	Conductivity input error alarm time unit	0000H: Second(s) 0001H: Minute(s)	
50H/20H	06H/03H	0126H	Transmission output 1 adjustment mode	0000H: Conductivity/Temperature Display Mode 0001H: Transmission output 1 Zero adjustment mode 0002H: Transmission output 1 Span adjustment mode	
50H/20H	06H/03H	0127H	Transmission output 1 Zero adjustment value	Set value	
50H/20H	06H/03H	0128H	Transmission output 1 Span adjustment value	Set value	
50H/20H	06H/03H	0131H	3-electrode Conductivity Sensor resistance	Set value	
50H/20H	06H/03H	0139H	A11 High/Low limits independent lower side span	Set value	
50H/20H	06H/03H	013AH	A12 High/Low limits independent lower side span	Set value	
50H/20H	06H/03H	013BH	A21 High/Low limits independent lower side span	Set value	
50H/20H	06H/03H	013CH	A22 High/Low limits independent lower side span	Set value	
50H/20H	06H/03H	013DH	A11 High/Low limits independent upper side span	Set value	
50H/20H	06H/03H	013EH	A12 High/Low limits independent upper side span	Set value	
50H/20H	06H/03H	013FH	A21 High/Low limits independent upper side span	Set value	
50H/20H	06H/03H	0140H	A22 High/Low limits independent upper side span	Set value	
50H/20H	06H/03H	0141H	A11 hysteresis	Set value	
50H/20H	06H/03H	0142H	A12 hysteresis	Set value	
50H/20H	06H/03H	0143H	A21 hysteresis	Set value	
50H/20H	06H/03H	0144H	A22 hysteresis	Set value	
50H/20H	06H/03H	0147H	Transmission output 2 type	0000H: Conductivity transmission 0001H: Temperature transmission	
50H/20H	06H/03H	0148H	Transmission output 2 high limit	Set value	
50H/20H	06H/03H	0149H	Transmission output 2 low limit	Set value	
50H	06H	014AH	Transmission output 2 adjustment mode (*)	0000H: Conductivity/Temperature display mode 0001H: Transmission output 2 Zero adjustment mode 0002H: Transmission output 2 Span adjustment mode	
50H / 20H	06H/03H	014BH	Transmission output 2 Zero adjustment value	Set value	
50H / 20H	06H/03H	014CH	Transmission output 2 Span adjustment value	Set value	
50H / 20H	06H/03H	014DH	Transmission output 2 status when calibrating	0000H: Last value HOLD 0001H: Set value HOLD 0002H: Measured value	

(*) If 'Setting' is executed while Transmission output 2 (TA2 option) is not ordered, the following error code will be returned.

Shinko protocol: Error code 4 (34H)
Modbus: Exception code 17 (11H)

Shinko Command Type	MODBUS Function Code	Data Item		Data
50H / 20H	06H/03H	014EH	Transmission output 2 value HOLD when calibrating	Set value
50H / 20H	06H/03H	0151H	Conductivity inputs for moving average	Set value
50H / 20H	06H/03H	0152H	Temperature inputs for moving average	Set value
50H / 20H	06H/03H	0200H	User save area 1	-32768 to 32767 (8000H to 7FFFH)
50H / 20H	06H/03H	0201H	User save area 2	-32768 to 32767 (8000H to 7FFFH)
50H / 20H	06H/03H	0202H	User save area 3	-32768 to 32767 (8000H to 7FFFH)
50H / 20H	06H/03H	0203H	User save area 4	-32768 to 32767 (8000H to 7FFFH)
50H / 20H	06H/03H	0204H	User save area 5	-32768 to 32767 (8000H to 7FFFH)
50H / 20H	06H/03H	0205H	User save area 6	-32768 to 32767 (8000H to 7FFFH)
50H / 20H	06H/03H	0206H	User save area 7	-32768 to 32767 (8000H to 7FFFH)
50H / 20H	06H/03H	0207H	User save area 8	-32768 to 32767 (8000H to 7FFFH)
50H / 20H	06H/03H	0208H	User save area 9	-32768 to 32767 (8000H to 7FFFH)
50H / 20H	06H/03H	0209H	User save area 10	-32768 to 32767 (8000H to 7FFFH)

11.6.3 Read Only Command

Shinko Command Type	MODBUS Function Code		Data	Item		Data	
20H	03H	0080H	Conductivit	у		Conductivity	
20H	03H	0081H	Status flag 0000 000 2 ¹⁵ 2 ⁰ digit: Ter 2 ¹ digit: Ter 2 ² digit: Ou 2 ³ digit: Ou 2 ⁴ digit: Ou val 2 ⁵ digit: Ou	1 0 000 to mperat tside te tside te tside n ue, sal tside n ue, sal 1 outpu 2 outpu 1 outpu 2 outpu	2 ⁰ ure sensor bur ure sensor shor emperature con 0: No emperature cor 0: No neasurement ra inity and TDS o 0: No neasurement ra inity and TDS o 0: No ut flag 0: OF ut flag 0: OF ut flag 0: OF	nout 0: Normal 1: Burnout t-circuited 0: Normal 1: Short-circuited ppensation range: Exceeding 110.0° C rmal 1: Exceeding 110.0° C mpensation range: Less than 0.0° C rmal 1: Less than 0.0° C ange of conductivity measured conversion (high limit) rmal 1: Outside high limit ange of conductivity measured conversion (low limit) rmal 1: Outside low limit F 1: ON F 1: ON F 1: ON	
			2 ¹¹ digit: Ur		us flag 0: Cor	nductivity/Temperature Display Mode ting mode	
			2 ¹² , 2 ¹³ digi	ts: Cor		ation status flag	
			2 ¹³	2 ¹²	,	Status	
			0	0		Temperature Display Mode	
			0 1 During Conductivity calibration Zero adjustment mode				
			1	0	During Condu adjustment m	ictivity calibration Span ode	
			2 ¹⁴ digit: A1 output 0: OFF 1: ON 2 ¹⁵ digit: Change in key operation 0: No 1: Yes				
20H	03H	0090H	Temperatu	<u> </u>		Temperature	

Shinko Command Type	MODBUS Function Code		Data I	tem		Data		
20H	03H	0091H	Status flag 2 0000 0000 2 ¹⁵ 2 ⁰ digit:	0000 to) 0000 2 ⁰ Ised (Always ())		
			-		ised (Always (·		
					smission outpu	ut 1 adjustment status flag		
			2 ⁵	2 ⁴		Status		
			0	0		/Temperature Display Mode		
			0	1	-	mission output 1 Zero adjustment ion output 1 adjustment mode		
			1	0	•	mission output 1 Span adjustment ion output 1 adjustment mode		
			2 ⁶ digit: A1 conductivity input error alarm output flag 0: OFF 1: ON					
			2 ⁷ digit: A2 c	onduc	tivity input erro	or alarm output flag 0: OFF 1: ON		
			2 ⁸ , 2 ⁹ digits:	Trans	smission outpu	ut 2 adjustment status flag		
			2 ⁹	2 ⁸		Status		
			0	0	Conductivity/	Temperature Display Mode		
			0	1	•	mission output 2 Zero adjustment ion output 2 adjustment mode		
			1	0	•	mission output 2 Span adjustment ion output 2 adjustment mode		
			2 ¹⁰ 2 ¹¹ diaits	∾Not u	sed (Always (
						ation status flag		
			2 ¹³	2 ¹²		Status		
			0	0	Conductivity	/Temperature Display Mode		
			0	1		erature calibration		
			2 ¹⁴ , 2 ¹⁵ digits	s:Not u	ised (Always ())		

11.7 Conductivity & Temperature Calibrations, Transmission Output 1 & 2 Adjustments

via Communication Command

11.7.1 Conductivity Calibration

Cell constant may vary due to deterioration of the 4-electrode Conductivity Sensor.

To correct the varied cell constant, calibration must be performed.

Calibrate Conductivity Zero adjustment first, followed by Conductivity Span adjustment.

The following outlines the procedure for conductivity calibration.

(1) Conductivity Zero adjustment

- ^① When selecting Last value HOLD (0000H) at Data item 010FH (Transmission output 1 status when calibrating) or 014DH (Transmission output 2 status when calibrating), select it while the 4-elctrode Conductivity Sensor is being immersed in the solution currently measured.
- ② At this stage, do not immerse the 4-elctrode Conductivity Sensor in the standard solution.
- (3) Set Data item 0042H (Conductivity calibration mode) to 0001H. The unit moves to Conductivity calibration Zero adjustment mode. If 2¹³, 2¹² digits are read at Data item 0081H (Status flag 1), 01 (During Conductivity calibration Zero adjustment mode) will be returned.
- ④ Set the Conductivity Zero adjustment value at Data item 0043H (Conductivity Zero adjustment value) so that conductivity becomes 0 (zero).
 - When conductivity is 0 (zero), it is not necessary to adjust.
- (5) Set Data item 0042H (Conductivity calibration mode) to 0000H. Conductivity Zero adjustment is complete, and the unit will revert to Conductivity/Temperature Display Mode.

(2) Conductivity Span adjustment

- ① Immerse the 4-elctrode Conductivity Sensor in the standard solution.
- Set Data item 0042H (Conductivity calibration mode) to 0002H.
 The unit moves to Conductivity calibration Span adjustment mode.
 If 2¹³, 2¹² digits are read at Data item 0081H (Status flag 1), 10 (During Conductivity calibration Span adjustment mode) will be returned.
- ^③ Set the Conductivity Span adjustment value at Data item 0044H (Conductivity Span adjustment value), while checking the conductivity.
- Set Data item 0042H (Conductivity calibration mode) to 0000H.
 Conductivity Span adjustment is complete, and the unit will revert to Conductivity/Temperature Display Mode.

If Conductivity calibration cannot be performed while calibrating conductivity due to temperature compensation error, Conductivity measurement value error, etc., Error code 1 (Burnout, Shortcircuited, etc.) will be returned after 2⁰ to 2⁵ digits are read at Data item 0081H (Status flag 1). To cancel the error code, set Data item 0042H (Conductivity calibration mode) to 0000H. The unit will revert to Conductivity/Temperature Display Mode.

If Conductivity Zero/Span adjustment value is set at Data item 0043H (Conductivity Zero adjustment value) or 0044H (Conductivity Span adjustment value) in Conductivity/Temperature Display Mode, the following error code will be returned.

- Shinko protocol: Error code 34H
- MODBUS protocol: Exception code 11H

11.7.2 Temperature Calibration

Temperature calibration is performed by setting temperature calibration value.

The following outlines the procedure for Temperature calibration.

① Set Data item 0040H (Temperature calibration mode) to 0001H. The unit moves to Temperature calibration mode.

If 2¹³, 2¹² digits are read at Data item 0091H (Status Flag 2), 01 (During temperature calibration) will be returned.

- ⁽²⁾ Set the Temperature calibration value at Data item 0041H (Temperature calibration value), while checking the temperature.
- ^③ Set Data item 0040H (Temperature calibration mode) to 0000H. Temperature calibration is complete, and the unit will revert to Conductivity/Temperature Display Mode.

If Temperature calibration cannot be performed while calibrating temperature due to input error, calibration value error, etc., Error code 1 (Burnout, Short-circuited, etc.) will be returned after 2^0 to 2^5 digits are read at Data item 0081H.

To cancel the error code, set Data item 0040H (Temperature calibration mode) to 0000H. The unit will revert to Conductivity/Temperature Display Mode.

If Temperature calibration value is set at Data item 0041H (Temperature calibration value) in Conductivity/Temperature Display Mode, the following error code will be returned.

Shinko protocol: Error code 34H MODBUS protocol: Exception code 11H

11.7.3 Transmission Output 1 Adjustment

Fine adjustment of Transmission output 1 is performed.

This instrument is adjusted at the factory, however, differences may occur between the indication value of the connected equipment (recorders, etc.) and output value of this instrument. In this case, perform Transmission output 1 Zero and Span adjustments.

The following outlines the procedure for Transmission output 1 adjustment.

- Set Data item 0126H (Transmission output 1 adjustment mode) to 0001H. The unit moves to Transmission output 1 Zero adjustment mode. If 2⁵, 2⁴ digits are read at Data item 0091H (Status flag 2), 01 (During Transmission output 1 Zero adjustment in Transmission output 1 adjustment mode) will be returned.
- ⁽²⁾ Set the Transmission output 1 Zero adjustment value at Data item 0127H (Transmission output 1 Zero adjustment value), while viewing the value indicated on the connected equipment (recorders, etc.).

Setting range: ±5.00% of Transmission output 1 span

- ⁽³⁾ Set Data item 0126H (Transmission output 1 adjustment mode) to 0002H. The unit moves to Transmission output 1 Span adjustment mode. If 2⁵, 2⁴ digits are read at Data item 0091H (Status flag 2), 10 (During Transmission output 1 Span adjustment in Transmission output 1 adjustment mode) will be returned.
- ④ Set Transmission output 1 Span adjustment value at Data item 0128H (Transmission output 1 Span adjustment value), while viewing the value indicated on the connected equipment (recorders, etc.).
 - Setting range: ±5.00% of Transmission output 1 span
- 5 Repeat steps 1 to 4 if necessary.
- ⁽⁶⁾ To finish Transmission output 1 adjustment, set Data item 0126H (Transmission output 1 adjustment mode) to 0000H.

The unit reverts to Conductivity/Temperature Display Mode.

11.7.4 Transmission Output 2 Adjustment

Fine adjustment of Transmission output 2 is performed.

This instrument is adjusted at the factory, however, differences may occur between the indication value of the connected equipment (recorders, etc.) and output value of this instrument. In this case, perform Transmission output 2 Zero and Span adjustments.

The following outlines the procedure for Transmission output 2 adjustment.

- Set Data item 014AH (Transmission output 2 adjustment mode) to 0001H. The unit moves to Transmission output 2 Zero adjustment mode. If 2⁹, 2⁸ digits are read at Data item 0091H (Status flag 2), 01 (During Transmission output 2 Zero adjustment in Transmission output 2 adjustment mode) will be returned.
- ⁽²⁾ Set the Transmission output 2 Zero adjustment value at Data item 014BH (Transmission output 2 Zero adjustment value), while viewing the value indicated on the connected equipment (recorders, etc.).
 - Setting range: ±5.00% of Transmission output 2 span
- ⁽³⁾ Set Data item 014AH (Transmission output 2 adjustment mode) to 0002H. The unit moves to Transmission output 2 Span adjustment mode. If 2⁹, 2⁸ digits are read at Data item 0091H (Status flag 2), 10 (During Transmission output 2 Span adjustment in Transmission output 2 adjustment mode) will be returned.
- ④ Set Transmission output 2 Span adjustment value at Data item 014CH (Transmission output 2 Span adjustment value), while viewing the value indicated on the connected equipment (recorders, etc.).

Setting range: ±5.00% of Transmission output 2 span

- $^{(5)}$ Repeat steps $^{(1)}$ to $^{(4)}$ if necessary.
- ⁽⁶⁾ To finish Transmission output 2 adjustment, set Data item 014AH (Transmission output 2 adjustment mode) to 0000H.

The unit reverts to Conductivity/Temperature Display Mode.

11.8 Notes on Programming Monitoring Software

11.8.1 How to Speed up the Scan Time

When monitoring multiple units of the WIL-102-ECH, set the program so that the requisite minimum pieces of data such as Data item 0080H (Conductivity), Data item 0090H (Temperature), Data item 0081H (Status flag 1), Data item 0091H (Status flag 2) can be read.

For other data, set the program so that they can be read only when their set value has been changed. This will speed up the scan time.

11.8.2 How to Read the Set Value Changes Made by Front Keypad Operation

If any set value is changed by keypad operation, the instrument sets [0081H (Status flag 1) 2¹⁵: Change in key operation] to 1 (Yes).

There are 2 methods of reading the set value changes made by the front keypad.

(1) Reading Method 1

- ⁽¹⁾ On the monitoring software side, check that [0081H (Status flag 1) 2¹⁵: Change in key operation] has been set to 1 (Yes), then read all set values.
- ⁽²⁾ Clear [0081H (Status flag 1) 2¹⁵: Change in key operation], by setting Data item 007FH (Key operation change flag clearing) to 0001H (Clear change flag).

If 007FH (Key operation change flag clearing) is set to 0001H (Clear change flag) during the setting mode of the instrument, Error code 5 (35H, Shinko protocol) or Exception Code 18 (12H, MODBUS protocol) will be returned as a negative acknowledgement. And [0081H (Status flag 1) 2¹⁵: Change in key operation] cannot be cleared.

Set a program so that all set values can be read when a negative acknowledgement is returned.

⁽³⁾ Read all set values again after acknowledgement is returned.

(2) Reading Method 2

- ⁽¹⁾ On the monitoring software side, check that [0081H (Status flag 1) 2¹⁵: Change in key operation] has been set to 1 (Yes), then set 007FH (Key operation change flag clearing) to 0001H (Clear change flag).
- ⁽²⁾ Set the program depending on the acknowledgement or negative acknowledgement as follows.

When acknowledgement is returned:

Consider it as settings completed, and read all set values.

When Error code 5 (35H, Shinko protocol) or Exception code 18 (12H, MODBUS protocol) is returned as a negative acknowledgement:

Consider it as still in setting mode, and read the requisite minimum pieces of data such as 0080H (Conductivity), 0090H (Temperature), 0081H (Status flag 1), 0091H (Status flag 2), then return to step 1.

Thus, programs which do not affect the scan time can be created using the methods described above, even if set values on the monitoring software will not be updated until settings are complete.

11.8.3 Note when Sending All Set Values Simultaneously

• If A type is changed at Data item 0005H (A11 type), 0050H (A12 type), 0051H (A21 type) or 0052H (A22 type), the A11, A12, A21 or A22 value will default to 0.00 or 0.0. Output status of A11, A12, A21 or A22 will also be initialized.

First, send the A11, A12, A21, A22 type, then send the A11, A12, A21, A22 value set at Data item 0006H (A11 value), 0053H (A12 value), 0054H (A21 value) and 0055H (A22 value).

12. Specifications

12.1 Standard Specifications

Rating

Rated Scale		Input			Input Range Resoluti		
			Cell	0.00 to 20.00 m	nS/cm	0.01 mS/cm	
			constant	0.0 to 200.0 mS	S/cm	0.1 mS/cm	
			1.0/cm	0.0 to 500.0 mS	S/cm	0.1 mS/cm	
				0 to 500 mS/cm	l	1 mS/cm	
				0.000 to 2.000	mS/cm	0.001 mS/cm	
				0.000 to 5.000	mS/cm	0.001 mS/cm	
				0.00 to 50.00 m	nS/cm	0.01 mS/cm	
				0 to 2000 µS/c	m	$1 \ \mu$ S/cm	
				0 to 5000 µS/c	m	$_{1}$ $\mu_{S/cm}$	
				0.000 to 2.000	S/m	0.001 S/m	
				0.00 to 20.00 S	/m	0.01 S/m	
				0.00 to 50.00 S	/m	0.01 S/m	
				0.0 to 50.0 S/m		0.1 S/m	
				0 to 2000 mS/m		1 mS/m	
		Conductivity		0.000 to 5.000		0.001 S/m	
	Conductivity	ucti		0.0 to 200.0 mS		0.1 mS/m	
	nct	puq		0.0 to 500.0 mS		0.1 mS/m	
	puq	ပိ		0.0 to 20.0 g/L	,,,,,	0.1 g/L	
	ပိ			0 to 200 g/L		1 g/L	
				0 to 500 g/L		1 g/L	
				0 to 2000 mg/L		1 mg/L	
				0 to 5000 mg/L		1 mg/L	
			Cell	0.0 to 200.0 ms	S/cm	0.1 mS/cm	
			constant	0.0 to 500.0 ms		0.1 mS/cm	
			10.0/cm	0 to 2000 mS/c		1 mS/cm	
			10.0/011	0.00 to 20.00 S		0.01 S/m	
				0.00 to 50.00 S		0.01 S/m	
				0.0 to 200.0 S/r		0.01 S/m	
				0 to 200 g/L	11	1 g/L	
				0 to 500 g/L		1 g/L	
				0 to 2000 g/L		1 g/L	
		Securator	o olinitı (
		Seawater NaCl salir		0.00 to 4.00%		0.01%	
	Tomrer		шу	0.00 to 20.00% 0.0 to 100.0℃			
	Temper-	Pt100 Pt1000				0.1°C	
	ature		una indianti-	0.0 to 100.0℃		0.1℃	
nnut				n, decimal point p			
nput	4-electrode Conductivity Sensor (Temperature element: Pt100)4-electrode Conductivity Sensor (Temperature element: Pt1000)					,	
Power supply voltage	Model		WIL	-102-ECH	WIL-	-102-ECH 1	
	Power su voltage	pply	100 to 240) V AC 50/60 Hz	24 V AC/	DC 50/60 Hz	
	Allowable voltage fluctuation range		85 to 264	VAC	20 to 28 V AC/DC		

General Structure

External Dimensions	30 x 88 x 108 m	30 x 88 x 108 mm (W x H x D, including socket)				
Mounting	DIN rail	DIN rail				
Case	Material: Flame	-resistant resin, Color: Light gray				
Panel	Membrane shee	et				
Indication Structure	Display					
	Conductivity	Red LED 4-digits, character size: 10 x 4.6 m (H x W)				
	Display					
	Temperature	Red LED 4-digits, character size: 10 x 4.6 m (H x W)				
	Display					
	Action Indicators					
	PWR (Yellow)	Lit when power supply is ON.				
	A1 (Red)	Lit when A1 output is ON. (Unlit when TA2 option is added.)				
	A2 (Yellow)	Lit when A2 output is ON. (Unlit when TA option or TA2				
		option is added.)				
	T/R (Yellow)	Lit while in Serial communication TX output (transmitting).				
Setting Structure	Setting method:	Setting method: Input system using membrane sheet key				

Indication Performance

Repeatability	Conductivity:	±0.5% of input span		
	Salinity conversion:	±1% of input span		
	TDS conversion:	±1.5% of input span		
Linearity	Conductivity:	±0.5% of input span		
	Salinity conversion:	±1% of input span		
	TDS conversion:	±1.5% of input span		
Indication Accuracy	Temperature: ±1℃			
Input Sampling Period	250 ms (2 inputs)			
Time Accuracy	Within ±1% of setting time			

Standard Functions

Conductivity Calibration	Calibrate Conductivity Zero adjustment first, followed by Conductivity Span adjustment. However, if $\angle \Box \Box \downarrow'$ (Lock 1), $\angle \Box \Box \Box''$ (Lock 2) or $\angle \Box \Box \exists'$ (Lock 3) is selected in [Set value lock] (p.31), the unit cannot move to			
	Conductivity calibration mode.			
	In Conductivity Zero adjustment, adjustment is performed so that conductivity becomes 0, without immersing the 4-electrode Conductivity Sensor in the standard solution.			
	In Conductivity Span adjustment, the 4-electrode Conductivity Sensor is immersed and adjustment is performed while checking conductivity. However, it is effective within the input rated range regardless of the			
	adjustment value.			
Temperature Calibration	When a sensor cannot be set at the exact location where measurement is desired, the resulting measured temperature may deviate from the temperature in the desired location. In this case, the desired temperature can be set for the desired location by setting a temperature calibration value. However, it is effective within the input rated range regardless of the temperature calibration value.			

TD	S Conversion	TDS stands for Total Dissolved Solids. Conductivity of a solution results from the amount of salt, minerals or					
		dissolved gas. Conductivity is an index indicating the total amount of a substance solution, and TDS indicates only the amount of all dissolved substances.					
		TDS can be used correctly to compare the two solutions in which one ingredient, such as NaCl, is included. However, for comparison between a solution in which one ingredient such as NaCl is included and the other solution in which more than one ingredient is included, TDS error will occur.					
		TDS and conductivity are expressed with the following formula. For Conductivity SI unit (S/m, mS/m): TDS (g/L) = L (S/m) × K × 10					
		TDS (mg/L) =	. ,				
		For Conductivity	. ,				
		TDS $(g/L) = L$	•				
		TDS (mg/L) =	. ,				
		、 υ,	· · · ·	L: Conductivity			
Se	rial Communication			e carried out from an ex	ternal computer.		
		(1) Reading and se	etting of vario	ous set values			
	(2) Reading of conductivity, temperature and status						
	(3) Function change, adjustment						
		(4) Reading and se					
	Cable Length	. ,		e value: Within 50 Ω (Te			
		necessary, but if us	sed, use 120	Ω minimum on both s	ides.)		
	Communication Line	EIA RS-485					
	Communication Method	Half-duplex communication					
	Communication Speed	9600, 19200, 38400 bps (Selectable by keypad)					
	Synchronization Method	Start-stop synchronization					
	Code Form	ASCII, Binary					
	Communication Protocol	Shinko protocol, MODBUS ASCII, MODBUS RTU (Selectable by keypad)					
	Data Bit/Parity	8 bits/No parity, 7 bits/No parity, 8 bits/Even, 7 bits/Even, 8 bits/Odd, 7 bits/Odd (Selectable by keypad)					
	Stop Bit	1, 2 (Selectable by keypad)					
	Error Correction	Command request repeat system					
	Error Detection	Parity check, Checksum (Shinko protocol), LRC (MODBUS protocol					
		ASCII), CRC-16 (MODBUS protocol RTU)					
	Data Format	Communication Protocol	Shinko Protocol	MODBUS ASCII	MODBUS RTU		
		Start bit	1	1	1		
		Data bit	7	7 (8) Selectable	8		
		Parity	Even	Even (No parity, Odd) Selectable	No parity (Even, Odd) Selectable		
		Stan hit	4	1 (2)	1 (2)		
		Stop bit	1	Selectable	Selectable		

Insulation/Dielectric Strength

	· ວ · · ·
Circuit Insulation Configuration	Power supply Conductivity input Paterna <
Dielectric Strength	Serial communication Serial communication

Attached Functions

		1			
Set Value Lock	Lock 1: None of the set values can be changed.				
	Lock 2: Only A11, A12, A21 and A22 values can be changed.				
	Lock 3: All set values – except Sensor cell constant, Measurement unit,				
	Measurement range, Conductivity Zero and Span adjustment values,				
	Temperature calibration value, Transmission output 1 Zero and Span				
	adjustment values, Transmission output 2 Zero and Span adjustment				
	values – can be temporarily changed.				
	However, they revert to their previous value after the power is turned				
	off because they are not saved in the non-volatile IC memory.				
Conductivity Input	When a sensor cannot be set at the exact location where measurement is				
Sensor Correction	desired, the sensor-measured conductivity may deviate from the conductivity in				
	the measured location. In such a case, desired conductivity can be obtained				
	by adding a sensor correction value. However, it is effective within the				
	measurement range regardless of the sensor correction value.				
Outside Measurement	When the conductivity measured value, salinity conversion value or TDS				
Range	conversion factor is outside the measurement range:				
	Conductivity Display Temperature Display				
	Conductivity, salinity conversion	Measured temperature			
	high limit or TDS conversion high				
	limit is flashing.				
	When measured temperature is outside the measurement range, the				
	following will be indicated.				
	Conductivity Display	Temperature Display			
	Conductivity Display Measured conductivity	Less than 0.0℃: <i>돈┍답닉</i>			
Power Failure	Measured conductivity	Less than 0.0℃: <i>E ー ロ Կ</i> Exceeding 110.0℃: <i>E ー ロ</i> ヨ			
Power Failure Countermeasure	Measured conductivity Measured conductivity	Less than 0.0℃: <i>E ー ロ Կ</i> Exceeding 110.0℃: <i>E ー ロ</i> ヨ			
	Measured conductivity Measured conductivity	Less than 0.0°C: 돈ㄷ집꾹 Exceeding 110.0°C: 돈ㄷ집∃ non-volatile IC memory. g timer, and if an abnormal status			

Warm-up Indication	Varm-up Indication For approx. 4 seconds after the power is switched ON, the input chara are indicated on the Conductivity Display and Temperature Display.							
	Display	1	naracter	Measurement Unit			-	
		C I	<i>⊏ฉา</i> ่ Conductivity (mS/cm)					
				Conductivity (S/m, mS/m)				
	Conductiv	vity '- i	<i>与E用</i> Seawater salinity (%)					
	Display	5	RLF	NaCl salinity (%)				
		17	d'4[]	TDS conversion (g/L)				
	Display	/ Cł	naracter	Input T	emperature fication (*)	Selection Iter Input Wire T		
	Temperat		r	Pt100		<i>F'I E</i> ′: 2-wire <i>F'I</i> ∃: 3-wire	type	
	Display	P_{i}	r 10	Pt1000				
	(*) This input temperature specification was specified at the time of ordering.					of ordering.		
Display Sleep Function	Conductivity, Temperature or No indication can be selected in [Display selection (p.34)], which is indicated in Conductivity/Temperature Display Mode. If Conductivity and/or Temperature is selected, and if indication time is set, the displays become unlit after the indication time has passed from no operation status. If any errors occur, or if any key is pressed, the display will re-light. If the indication time is set to 0, the display remains lit, and this function does not work.							
Auto-light Function	Automatically measures and controls brightness of the Conductivity Display, Temperature Display and action indicators.							
Cable Length Correction	If $P' [] c$ (2-wire type) is selected in [Pt100 input wire type (p. 30)], and if sensor cable is too long, temperature measurement error will occur due to cable resistance. This can be corrected by setting the cable length correction value and cable cross-section area.							
Error Code	The following error codes flash on the Temperature Display.							
	Error Code	Error Type		ror tents	Desc	ription	Occurrence	
	E-0 /	Fail	Temp. S burnout		Temperature wire is burnt			
	E-02	Fail	Temp. S short-ci		Temperature wire is short-		When measuring	
	8-03	Error	Outside comper	•	Measured te has exceede	•	or calibrating	
	E-04	Error	Outside comper	e temp.	Measured te is less than 0	mperature		
	(Abbreviation: Temp.: Temperature)							

O<u>ther</u>

Power Consumption	Approx. 8 VA
Ambient Temperature	0 to 50°C (32 to 122°F)
Ambient Humidity	35 to 85 %RH (non-condensing)
Weight	Approx. 200 g (including the socket)
Accessories Included	Instruction manual: 1 copy
	Unit label: 1 sheet
Accessories Sold	Socket: ASK-001-1 (Finger-safe and screw fall prevention)
Separately	
Environmental	RoHS directive compliant
Specification	

12.2 Optional Specifications

A Output (Option Code: EVT or TA)

	Output (Option Cod				
A	Output	If the measured value exceeds the A value, the A output will be			
		turned ON for each A \Box output type.			
		A1 or A2 output turns ON depending on the settings in [A1/A2 output allocation (p.35)] and [Output ON time/OFF time when A1/A2 output ON			
			me/OFF time when A1/A2 output ON		
		(pp.35, 36)].	A cutruit status can be read via		
		Status flag 1 (A11, A12, A21, A22 out	, $A \Box \Box$ output status can be read via		
		- .	rors occur, differs depending on the		
		selection in $[A \square]$ output when input			
			[A output when input errors occur		
			output status will be turned OFF if		
		input errors occur.			
		· · · · · · · · · · · · · · · · · · ·	[A content of the second secon		
			\Box output status will be maintained if		
		input errors occur.			
		During conductivity calibration, A			
	Action		ordered, only A1 output can be added.		
	Action A⊡⊡ ON side,	ON/OFF action Setting range differs depending on th	e selection of A		
	A OFF side	measurement range.			
		measurement range.			
		Conductivity input			
		Cell constant 1.0/cm:			
		Measurement Range Setting Ra			
		0.00 to 20.00 mS/cm	0.00 to 2.00 mS/cm		
		0.0 to 200.0 mS/cm	0.0 to 20.0 mS/cm		
		0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm	0.0 to 20.0 mS/cm 0.0 to 50.0 mS/cm		
		0.0 to 500.0 mS/cm	0.0 to 50.0 mS/cm		
		0.0 to 500.0 mS/cm 0 to 500 mS/cm	0.0 to 50.0 mS/cm 0 to 50 mS/cm		
		0.0 to 500.0 mS/cm 0 to 500 mS/cm 0.000 to 2.000 mS/cm	0.0 to 50.0 mS/cm 0 to 50 mS/cm 0.000 to 0.200 mS/cm		
		0.0 to 500.0 mS/cm 0 to 500 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm	0.0 to 50.0 mS/cm 0 to 50 mS/cm 0.000 to 0.200 mS/cm 0.000 to 0.500 mS/cm		
		0.0 to 500.0 mS/cm 0 to 500 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm 0.00 to 50.00 mS/cm	0.0 to 50.0 mS/cm 0 to 50 mS/cm 0.000 to 0.200 mS/cm 0.000 to 0.500 mS/cm 0.00 to 5.00 mS/cm		
		0.0 to 500.0 mS/cm 0 to 500 mS/cm 0.000 to 2.000 mS/cm 0.000 to 50.00 mS/cm 0.00 to 50.00 mS/cm 0 to 2000 μ S/cm	0.0 to 50.0 mS/cm 0 to 50 mS/cm 0.000 to 0.200 mS/cm 0.000 to 0.500 mS/cm 0.00 to 5.00 mS/cm 0 to 200 μS/cm		
		0.0 to 500.0 mS/cm 0 to 500 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm 0.00 to 50.00 mS/cm 0 to 2000 µS/cm 0 to 5000 µS/cm 0 to 5000 µS/cm	0.0 to 50.0 mS/cm 0 to 50 mS/cm 0.000 to 0.200 mS/cm 0.000 to 0.500 mS/cm 0.00 to 5.00 mS/cm 0 to 200 μS/cm 0 to 500 μS/cm 0 to 500 μS/cm		
		0.0 to 500.0 mS/cm 0 to 500 mS/cm 0.000 to 2.000 mS/cm 0.000 to 50.00 mS/cm 0.00 to 50.00 mS/cm 0 to 2000 µS/cm 0 to 5000 µS/cm 0.000 to 5.000 µS/cm	$\begin{array}{c} 0.0 \ \text{to} \ 50.0 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 50 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 0.200 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 0.500 \ \text{mS/cm} \\ \hline 0.00 \ \text{to} \ 5.00 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 200 \ \mu\text{S/cm} \\ \hline 0 \ \text{to} \ 500 \ \mu\text{S/cm} \\ \hline 0.000 \ \text{to} \ 0.200 \ \text{S/m} \\ \hline \end{array}$		
		$\begin{array}{c} 0.0 \ \text{to} \ 500.0 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 500 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 5.000 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 2000 \ \mu\text{S/cm} \\ \hline 0 \ \text{to} \ 5000 \ \mu\text{S/cm} \\ \hline 0 \ \text{to} \ 5000 \ \mu\text{S/cm} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 20.00 \ \text{S/m} \\ \hline \end{array}$	0.0 to 50.0 mS/cm 0 to 50 mS/cm 0.000 to 0.200 mS/cm 0.000 to 0.500 mS/cm 0.00 to 5.00 mS/cm 0 to 200 µS/cm 0 to 500 µS/cm 0 to 500 µS/cm 0 to 500 µS/cm 0 to 500 µS/cm 0.000 to 0.200 S/m 0.000 to 2.00 S/m		
		$\begin{array}{c} 0.0 \ \text{to} \ 500.0 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 500 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 5.000 \ \text{mS/cm} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 50.00 \ \mu\text{S/cm} \\ \hline 0 \ \text{to} \ 5000 \ \mu\text{S/cm} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 20.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline \end{array}$	$\begin{array}{c} 0.0 \ {\rm to} \ 50.0 \ {\rm mS/cm} \\ \hline 0 \ {\rm to} \ 50 \ {\rm mS/cm} \\ \hline 0.000 \ {\rm to} \ 0.200 \ {\rm mS/cm} \\ \hline 0.000 \ {\rm to} \ 0.500 \ {\rm mS/cm} \\ \hline 0.00 \ {\rm to} \ 5.00 \ {\rm mS/cm} \\ \hline 0 \ {\rm to} \ 5.00 \ \mu{\rm S/cm} \\ \hline 0 \ {\rm to} \ 500 \ \mu{\rm S/cm} \\ \hline 0.000 \ {\rm to} \ 0.200 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 0.200 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.00 \ {\rm S/m} \end{array}$		
		$\begin{array}{c} 0.0 \ \text{to} \ 500.0 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 500 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 5.000 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 2000 \ \mu\text{S/cm} \\ \hline 0 \ \text{to} \ 2000 \ \mu\text{S/cm} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline \end{array}$	$\begin{array}{c} 0.0 \ \text{to} \ 50.0 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 50 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 0.200 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 0.500 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 5.00 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 200 \ \mu\text{S/cm} \\ \hline 0 \ \text{to} \ 200 \ \mu\text{S/cm} \\ \hline 0.000 \ \text{to} \ 0.200 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 0.200 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 5.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 5.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 5.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 5.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 5.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 5.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 5.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 5.00 \ \text{S/m} \\ \hline \end{array}$		
		$\begin{array}{c} 0.0 \ \text{to} \ 500.0 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 500 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 5.000 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 2000 \ \mu\text{S/cm} \\ \hline 0 \ \text{to} \ 5000 \ \mu\text{S/cm} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 20.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0 \ \text{to} \ 2000 \ \text{mS/m} \\ \hline 0 \ \text{to} \ 200 \ \text{mS/m} \\ \hline 0 \ \text{to} \ 200 \ \text{mS/m} \\ \hline 0 \ \text{to} \ 200 \ \text{mS/m} \\ \hline 0 \ \text{to} \ 200 \ \text{mS/m} \\ \hline 0 \ \text{to} \ 200 \ \text{mS/m} \\ \hline 0 \ \text{to} \ 10 \ \text{mS/m} \ 0 \ \text{to} \ 10 \ \text{mS/m} \ 0 \ \text{to} \ 10 \ \text{mS/m} \ 0 \ \text{mS/m} \ $	$\begin{array}{c} 0.0 \ {\rm to} \ 50.0 \ {\rm mS/cm} \\ \hline 0 \ {\rm to} \ 50 \ {\rm mS/cm} \\ \hline 0.000 \ {\rm to} \ 0.200 \ {\rm mS/cm} \\ \hline 0.000 \ {\rm to} \ 0.200 \ {\rm mS/cm} \\ \hline 0.000 \ {\rm to} \ 5.00 \ {\rm mS/cm} \\ \hline 0 \ {\rm to} \ 200 \ \mu{\rm S/cm} \\ \hline 0 \ {\rm to} \ 200 \ \mu{\rm S/cm} \\ \hline 0 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 0.200 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0 \ {\rm to} \ 200 \ {\rm mS/m} \\ \hline \end{array}$		
		$\begin{array}{c} 0.0 \ \text{to} \ 500.0 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 500 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 2000 \ \mu\text{S/cm} \\ \hline 0 \ \text{to} \ 2000 \ \mu\text{S/cm} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 20.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.000 \ \text{to} \ 50.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.000 \ \text{S/m}$	$\begin{array}{c} 0.0 \ \text{to} \ 50.0 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 50 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 0.200 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 0.500 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 5.00 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 200 \ \mu \ \text{S/cm} \\ \hline 0 \ \text{to} \ 500 \ \mu \ \text{S/cm} \\ \hline 0.000 \ \text{to} \ 0.200 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 0.200 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 5.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 5.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 5.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 5.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 5.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 5.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 5.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 5.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 5.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 5.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 0.500 \ \text{to} \ 0.50 $		
		$\begin{array}{c} 0.0 \ \text{to} \ 500.0 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 500 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 5.000 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 2000 \ \mu\text{S/cm} \\ \hline 0 \ \text{to} \ 5000 \ \mu\text{S/cm} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 20.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \ \ 0.00 \ \text{to} \ 50.00 \ \text{S/m} \ \ 0.00 \ \text{to} \ 0.$	0.0 to 50.0 mS/cm 0 to 50 mS/cm 0.000 to 0.200 mS/cm 0.000 to 0.500 mS/cm 0.00 to 5.00 mS/cm 0 to 200 µS/cm 0 to 500 µS/cm 0.000 to 0.200 S/m 0.000 to 2.00 S/m 0.00 to 5.00 S/m 0.0 to 5.0 S/m 0 to 200 mS/m 0.000 to 0.500 S/m 0.000 to 0.500 S/m		
		$\begin{array}{c} 0.0 \ \text{to} \ 500.0 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 500 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 5.000 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 2000 \ \mu\text{S/cm} \\ \hline 0 \ \text{to} \ 5000 \ \mu\text{S/cm} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 20.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.0 \ \text{to} \ 500.0 \ \text{mS/m} \\ \hline 0.0 \ \text{mS/m} \\ \hline 0.0 \ \text{to} \ 500.0 \ \text{mS/m} \\ \hline 0.0 \ \text{mS/m} \\ \hline 0.0 \ \text{mS/m} \ \text{mS/m} \\ \hline 0.0 \ \text{mS/m} \ \ 0.0 \ \text{mS/m} \\ \hline 0.0 \ \text{mS/m} \ \ 0.0$	$\begin{array}{c} 0.0 \ {\rm to} \ 50.0 \ {\rm mS/cm} \\ \hline 0 \ {\rm to} \ 50 \ {\rm mS/cm} \\ \hline 0.000 \ {\rm to} \ 0.200 \ {\rm mS/cm} \\ \hline 0.000 \ {\rm to} \ 0.200 \ {\rm mS/cm} \\ \hline 0.000 \ {\rm to} \ 0.500 \ {\rm mS/cm} \\ \hline 0 \ {\rm to} \ 200 \ \mu {\rm S/cm} \\ \hline 0 \ {\rm to} \ 5.00 \ {\rm mS/cm} \\ \hline 0.000 \ {\rm to} \ 0.200 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 0.200 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 0.200 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.0 \ {\rm to} \ 50.0 \ {\rm mS/m} \\ \hline 0.0 \ {\rm to} \ {\rm to} \ {\rm to}$		
		$\begin{array}{c} 0.0 \ \text{to} \ 500.0 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 500 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 5.000 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 2000 \ \mu\text{S/cm} \\ \hline 0 \ \text{to} \ 2000 \ \mu\text{S/cm} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 20.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.0 \ \text{to} \ 50.00 \ \text{to} \ 50.00 \ \text{to} \ 10 \ \text{to} \ 50.00 \ \text{to} \ 10 \ \text{to}$	0.0 to 50.0 mS/cm 0 to 50 mS/cm 0.000 to 0.200 mS/cm 0.000 to 0.500 mS/cm 0.00 to 5.00 mS/cm 0 to 200 µS/cm 0 to 500 µS/cm 0.000 to 0.200 S/m 0.00 to 2.00 S/m 0.00 to 5.00 S/m 0.00 to 5.00 S/m 0.0 to 5.0 S/m 0.000 to 0.500 S/m 0.000 to 0.500 S/m 0.000 to 0.500 S/m 0.0 to 20.0 mS/m 0.0 to 20.0 mS/m 0.0 to 50.0 mS/m 0.0 to 50.0 mS/m		
		$\begin{array}{c} 0.0 \ {\rm to} \ 500.0 \ {\rm mS/cm} \\ \hline 0 \ {\rm to} \ 500 \ {\rm mS/cm} \\ \hline 0.000 \ {\rm to} \ 2.000 \ {\rm mS/cm} \\ \hline 0.000 \ {\rm to} \ 5.000 \ {\rm mS/cm} \\ \hline 0.000 \ {\rm to} \ 50.00 \ {\rm mS/cm} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm mS/cm} \\ \hline 0 \ {\rm to} \ 2000 \ {\rm \muS/cm} \\ \hline 0 \ {\rm to} \ 2000 \ {\rm \muS/cm} \\ \hline 0.000 \ {\rm to} \ 2.000 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 2.000 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 20.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm mS/m} \\ \hline 0.0 \ {\rm to} \ 200.0 \ {\rm mS/m} \\ \hline 0.0 \ {\rm to} \ 200.0 \ {\rm mS/m} \\ \hline 0.0 \ {\rm to} \ 200.0 \ {\rm mS/m} \\ \hline 0.0 \ {\rm to} \ 200.0 \ {\rm mS/m} \\ \hline 0.0 \ {\rm to} \ 200.0 \ {\rm mS/m} \\ \hline 0.0 \ {\rm to} \ 200.0 \ {\rm mS/m} \\ \hline 0.0 \ {\rm to} \ 20.0 \ {\rm g/L} \\ \hline 0 \ {\rm to} \ 200 \ {\rm g/L} \\ \hline 0 \ {\rm to} \ 200 \ {\rm g/L} \end{array}$	0.0 to 50.0 mS/cm 0 to 50 mS/cm 0.000 to 0.200 mS/cm 0.000 to 0.500 mS/cm 0.00 to 5.00 mS/cm 0 to 200 μ S/cm 0 to 500 μ S/cm 0.000 to 0.200 S/m 0.000 to 2.00 S/m 0.00 to 5.00 S/m 0.00 to 5.00 S/m 0 to 200 mS/m 0.000 to 0.500 S/m 0.000 to 0.500 S/m 0.0 to 20.0 mS/m 0.0 to 20.0 mS/m 0.0 to 20.0 mS/m 0.0 to 20.0 mS/m 0.0 to 20.0 g/L 0 to 20 g/L		
		$\begin{array}{c} 0.0 \ \text{to} \ 500.0 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 500 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 5.000 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 2000 \ \mu\text{S/cm} \\ \hline 0 \ \text{to} \ 2000 \ \mu\text{S/cm} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 20.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.0 \ \text{to} \ 200.0 \ \text{mS/m} \\ \hline 0.0 \ \text{to} \ 50.00 \ \text{g/L} \\ \hline 0 \ \text{to} \ 2000 \ \text{g/L} \\ \hline 0 \ \text{to} \ 5000 \ \text{g/L} \end{array}$	0.0 to 50.0 mS/cm 0 to 50 mS/cm 0.000 to 0.200 mS/cm 0.000 to 0.500 mS/cm 0.00 to 5.00 mS/cm 0 to 200 µS/cm 0 to 500 µS/cm 0.000 to 0.200 S/m 0.000 to 2.00 S/m 0.00 to 5.00 S/m 0.00 to 5.00 S/m 0.0 to 5.0 S/m 0 to 200 mS/m 0.00 to 0.500 S/m 0.0 to 20.0 mS/m 0.0 to 20.0 mS/m 0.0 to 20.0 mS/m 0.0 to 20.0 mS/m 0.0 to 2.0 g/L 0 to 20 g/L 0 to 50 g/L 0 to 200 mg/L		
		$\begin{array}{c} 0.0 \ {\rm to} \ 500.0 \ {\rm mS/cm} \\ \hline 0 \ {\rm to} \ 500 \ {\rm mS/cm} \\ \hline 0.000 \ {\rm to} \ 2.000 \ {\rm mS/cm} \\ \hline 0.000 \ {\rm to} \ 5.000 \ {\rm mS/cm} \\ \hline 0.000 \ {\rm to} \ 50.00 \ {\rm mS/cm} \\ \hline 0 \ {\rm to} \ 2000 \ \mu {\rm S/cm} \\ \hline 0 \ {\rm to} \ 2000 \ \mu {\rm S/cm} \\ \hline 0 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 2.000 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 20.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 20.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm mS/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm mS/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm mS/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm mS/m} \\ \hline 0.0 \ {\rm to} \ 20.00 \ {\rm mS/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm g/L} \\ \hline 0 \ {\rm to} \ 50.00 \ {\rm g/L} \\ \hline 0 \ {\rm to} \ 50.00 \ {\rm mJ} \\ \hline 0 \ {\rm to} \ 50.00 \ {\rm mJ} \\ \hline 0 \ {\rm to} \ 50.00 \ {\rm mJ} \\ \hline 0 \ {\rm to} \ 50.00 \ {\rm mJ} \\ \hline 0 \ {\rm to} \ 20.0 \ {\rm mJ} \ \ 0 \ {\rm to} \ 20.0 \ {\rm mJ} \ \ 0 \ {\rm to} \ 20.0 \ {\rm mJ} \ \ 0 \ {\rm mJ} \ \ 0 \ {\rm mJ} \ $	0.0 to 50.0 mS/cm 0 to 50 mS/cm 0.000 to 0.200 mS/cm 0.000 to 0.500 mS/cm 0.00 to 5.00 mS/cm 0 to 200 µS/cm 0 to 500 µS/cm 0.000 to 0.200 S/m 0.00 to 5.00 S/m 0.00 to 5.00 S/m 0.00 to 5.00 S/m 0.000 to 0.500 S/m 0.000 to 0.500 S/m 0.000 to 5.00 mS/m 0.00 to 50.0 mS/m 0.0 to 50.0 mS/m 0.0 to 50.0 mS/m 0.0 to 2.0 g/L 0 to 20 g/L 0 to 50 g/L		

	Cell constant 10.0/cm:				
	Measurement Range	Setting Range			
	0.0 to 200.0 mS/cm	0.0 to 20.0 mS/cm			
	0.0 to 500.0 mS/cm	0.0 to 50.0 mS/cm			
	0 to 2000 mS/cm	0 to 200 mS/cm			
	0.00 to 20.00 S/m	0.00 to 2.00 S/m			
	0.00 to 50.00 S/m	0.00 to 5.00 S/m			
	0.0 to 200.0 S/m	0.0 to 20.0 S/m			
	0 to 200 g/L	0 to 20 g/L			
	0 to 500 g/L	0 to 50 g/L			
	0 to 2000 g/L	0 to 200 g/L			
	Seawater salinity 0.00 to 4.00%	0.00 to 0.40%			
	NaCl salinity 0.00 to 20.00%	0.00 to 2.00%			
	Temperature input	Setting Dange			
	Measurement Range0.0 to 100.0℃	Setting Range 0.0 to 10.0℃			
A High/Low Iimits independent	• Conductivity input: Measurement r high limit (*1)	ange low limit to Measurement range			
upper side span,	• Temperature input: 0.0 to 100.0°C	(*2)			
	(*1) Measurement unit and decimal point				
A High/Low	(*2) The placement of the decimal point de	-			
limits independent					
lower side span					
•	Cotting range differe depending on /	tune and measurement renge			
A hysteresis		The system and measurement range.			
•	Conductivity input	A□□ type and measurement range.			
•	Conductivity input Cell constant 1.0/cm				
•	Conductivity input Cell constant 1.0/cm Measurement Range	Setting Range			
•	Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm	Setting Range 0.01 to 2.00 mS/cm			
•	Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm			
•	Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm			
•	Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0 to 500 mS/cm	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm			
•	Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0 to 500 mS/cm 0.000 to 2.000 mS/cm	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm			
•	Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0.000 to 5.000 mS/cm 0.000 to 5.000 mS/cm	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm			
•	Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0.000 to 5.000 mS/cm 0.000 to 5.000 mS/cm 0.00 to 50.00 mS/cm	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm 0.001 to 0.500 mS/cm 0.01 to 5.00 mS/cm			
•	• Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0 to 500 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm 0.00 to 50.00 mS/cm 0 to 2000 µS/cm	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm 0.01 to 5.00 mS/cm 1 to 50.0 mS/cm 1 to 50.0 mS/cm			
•	• Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0.000 to 5000 mS/cm 0.000 to 5.000 mS/cm 0.000 to 50.00 mS/cm 0 to 2000 µS/cm 0 to 5000 µS/cm	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm 0.01 to 5.00 mS/cm 1 to 200 \mu S/cm 1 to 500 mS/cm 1 to 500 mS/cm 1 to 500 \mu S/cm			
•	 Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0 to 500 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm 0.000 to 50.00 mS/cm 0.00 to 50.00 mS/cm 0 to 5000 µS/cm 0 to 5000 µS/cm 0 to 5000 µS/cm 0 to 5000 µS/cm 0.000 to 2.000 S/m 	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm 0.01 to 5.00 mS/cm 1 to 500 mS/cm 0.01 to 5.00 mS/cm 1 to 500 mS/cm 0.01 to 5.00 mS/cm 1 to 500 mS/cm 1 to 500 mS/cm 1 to 500 mS/cm 1 to 500 mS/cm 0.001 to 0.200 S/m			
•	 Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0 to 500 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm 0.000 to 50.00 mS/cm 0 to 2000 µS/cm 0 to 2000 µS/cm 0 to 5000 µS/cm 0 to 5000 µS/cm 0 to 5000 µS/cm 0 to 5000 µS/cm 0 to 2000 µS/cm 0 to 2000 µS/cm 0.000 to 2.000 S/m 0.00 to 20.00 S/m 	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm 0.01 to 5.00 mS/cm 0.01 to 5.00 mS/cm 0.01 to 5.00 mS/cm 0.01 to 5.00 mS/cm 1 to 500 μ S/cm 1 to 500 μ S/cm 0.001 to 0.200 S/m 0.01 to 2.00 S/m			
•	 Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0 to 500 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm 0.000 to 50.00 mS/cm 0.00 to 50.00 mS/cm 0 to 2000 µS/cm 0 to 5000 µS/cm 0 to 5000 µS/cm 0 to 5000 µS/cm 0 to 5000 µS/cm 0.000 to 2.000 S/m 0.00 to 50.00 S/m 	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50.0 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm 0.01 to 5.00 mS/cm 0.01 to 5.00 mS/cm 1 to 500 μ S/cm 1 to 500 μ S/cm 1 to 500 μ S/cm 0.001 to 0.200 S/m 0.01 to 2.00 S/m 0.01 to 5.00 S/m			
•	• Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0.000 to 5000 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm 0.000 to 50.00 mS/cm $0 \text{ to } 2000 \mu\text{S/cm}$ $0 \text{ to } 2000 \mu\text{S/cm}$ 0.000 to 2.000 S/m 0.000 to 2.000 S/m 0.00 to 50.00 S/m 0.00 to 50.00 S/m	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm 0.01 to 5.00 mS/cm 0.01 to 5.00 mS/cm 1 to 500 μ S/cm 1 to 500 μ S/cm 1 to 500 μ S/cm 0.001 to 0.200 S/m 0.01 to 5.00 S/m 0.01 to 5.00 S/m 0.1 to 5.0 S/m			
•	• Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0.000 to 5000 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm 0.000 to 50.00 mS/cm $0 \text{ to } 2000 \text$	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm 0.01 to 5.00 mS/cm 0.01 to 5.00 mS/cm 1 to 200 μ S/cm 1 to 500 μ S/cm 0.001 to 0.200 S/m 0.01 to 2.00 S/m 0.01 to 5.00 S/m 0.1 to 5.00 S/m 0.1 to 5.0 S/m 1 to 200 mS/m			
•	• Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0 to 500 mS/cm 0.000 to 2.000 mS/cm 0.000 to 2.000 mS/cm 0.000 to 50.00 mS/cm 0 to 2000 S/cm 0 to 2000 S/cm 0.000 to 2.000	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm 0.01 to 5.00 mS/cm 0.01 to 5.00 mS/cm 0.01 to 5.00 mS/cm 1 to 500 μ S/cm 1 to 500 μ S/cm 1 to 500 μ S/cm 0.01 to 0.200 S/m 0.01 to 5.00 S/m 0.1 to 5.0 S/m 1 to 200 mS/m 0.1 to 5.0 S/m 0.001 to 0.500 S/m			
•	• Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0.000 to 5000 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm 0.000 to 50.00 mS/cm $0 \text{ to } 2000 \text$	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm 0.01 to 5.00 mS/cm 0.001 to 0.200 S/m 0.01 to 5.00 S/m 0.1 to 5.0 S/m 1 to 200 mS/m 0.001 to 0.500 S/m 0.001 to 0.500 S/m 0.1 to 20.0 mS/m 0.1 to 20.0 mS/m			
•	• Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0.00 to 5000 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm 0.000 to 5.000 mS/cm $0 \text{ to } 2000 \text$	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50.0 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.200 mS/cm 0.01 to 5.00 mS/cm 0.01 to 5.00 mS/cm 0.01 to 5.00 mS/cm 1 to 200 μ S/cm 1 to 500 μ S/cm 0.01 to 0.200 S/m 0.01 to 2.00 S/m 0.01 to 5.00 S/m 0.1 to 5.0 S/m 1 to 200 mS/m 0.01 to 0.500 S/m 0.1 to 5.00 S/m 0.1 to 5.00 mS/m 0.1 to 50.0 mS/m 0.1 to 50.0 mS/m 0.1 to 50.0 mS/m			
•	• Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0.000 to 5.000 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm $0 \text{ to } 2000 \text$	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm 0.001 to 0.500 mS/cm 0.001 to 0.500 mS/cm 0.01 to 5.00 mS/cm 1 to 200 μ S/cm 1 to 500 μ S/cm 0.001 to 0.200 S/m 0.01 to 5.00 S/m 0.01 to 5.00 S/m 0.1 to 5.00 S/m 0.1 to 5.00 S/m 0.1 to 50.0 mS/m 0.1 to 50.0 mS/m 0.1 to 20.0 mS/m 0.1 to 20.0 mS/m 0.1 to 20.0 mS/m 0.1 to 2.0 g/L			
•	• Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0.00 to 5000 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm 0.000 to 50.00 mS/cm $0 \text{ to } 2000 \text$	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm 0.001 to 0.500 mS/cm 0.01 to 5.00 S/m 0.01 to 5.00 S/m 0.01 to 5.00 S/m 0.1 to 5.00 mS/m 0.1 to 50.0 mS/m 0.1 to 50.0 mS/m 0.1 to 20.0 mS/m			
•	• Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0.00 to 5000 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm 0.000 to 50.00 mS/cm 0 to 2000 S/cm 0 to 2000 S/cm 0.000 to 2.000	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm 0.001 to 0.500 mS/cm 0.01 to 5.00 mS/cm 1 to 200 μ S/cm 1 to 500 μ S/cm 1 to 500 μ S/cm 0.01 to 0.200 S/m 0.01 to 5.00 S/m 0.01 to 5.00 S/m 0.1 to 5.00 S/m 0.1 to 5.00 S/m 0.1 to 5.00 S/m 0.1 to 5.00 mS/m 0.1 to 50.0 mS/m 0.1 to 20.0 mS/m 0.1 to 50.0 mS/m 0.1 to 50.0 g/L 1 to 20 g/L 1 to 50 g/L			
•	 Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0.000 to 5000 mS/cm 0.000 to 5.000 mS/cm 0.000 to 5.000 mS/cm 0.000 to 50.00 mS/cm 0 to 2000 µS/cm 0 to 2000 µS/cm 0 to 5000 µS/cm 0 to 5000 S/m 0.00 to 50.00 mS/m 0.00 to 20.00 mS/m 0.00 to 20.00 mS/m 0.00 to 20.00 mS/m 	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm 0.001 to 5.00 mS/cm 0.01 to 5.00 mS/cm 0.001 to 0.200 S/m 0.01 to 5.00 S/m 0.01 to 5.00 S/m 0.1 to 5.00 mS/m 0.1 to 50.0 mS/m 0.1 to 50.0 mS/m 0.1 to 50.0 mS/m 0.1 to 20.0 mS/m 0.1 to 20.0 mS/m 1 to 20 g/L 1 to 20 g/L 1 to 20 g/L 1 to 200 mg/L			
•	• Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0.00 to 5000 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm 0.000 to 50.00 mS/cm 0 to 2000 S/cm 0 to 2000 S/cm 0.000 to 2.000	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm 0.001 to 0.500 mS/cm 0.01 to 5.00 mS/cm 1 to 200 μ S/cm 1 to 500 μ S/cm 1 to 500 μ S/cm 0.01 to 0.200 S/m 0.01 to 5.00 S/m 0.01 to 5.00 S/m 0.1 to 5.00 S/m 0.1 to 5.00 S/m 0.1 to 5.00 S/m 0.1 to 5.00 mS/m 0.1 to 50.0 mS/m 0.1 to 20.0 mS/m 0.1 to 50.0 mS/m 0.1 to 50.0 g/L 1 to 20 g/L 1 to 50 g/L			

	Cell constant 10.0)/cm:			
	Measurement Range		Setting Range		
	0.0 to 200.0 mS/cm	- J	0.1 to 20.0 mS/cm		
	0.0 to 500.0 mS/cm		0.1 to 50.0 mS/cm		
	0 to 2000 mS/cm		1 to 200 mS/cm		
	0.00 to 20.00 S/m		0.01 to 2.00 S/m		
	0.00 to 50.00 S/m		0.01 to 5.00 S/m		
	0.0 to 200.0 S/m		0.1 to 20.0 S/m		
	0 to 200 g/L		1 to 20 g/L		
	0 to 500 g/L		1 to 50 g/L		
	0 to 2000 g/L		1 to 200 g/L		
	Seawater salinity 0.0	0 to 4 00%	0.01 to 0.40%		
	NaCl salinity 0.00 to 2		0.01 to 2.00%		
			0.0110 2.00 %		
	Temperature input		Cotting Denge		
	Measuremen 0.0 to 100.0℃	t Range	Setting Range 0.1 to 10.0℃		
A⊡⊡ Type		ected from the fo	llowing via the keypad.		
// 1390	No action		iowing via the Reypad.		
		Conductivity input low limit action			
	Conductivity input low limit action Conductivity input high limit action				
	Temperature input low limit action				
	Temperature input low limit action Temperature input high limit action				
	• Error output [When the error type is "Error" (p.72), the output is turned ON.]				
		••	Fail" (p.72), the output is turned ON.]		
	Conductivity input F	• •			
	Temperature input F	•	•		
Output	Relay contact, 1a				
	Control capacity	3A 250 V AC (Resistive load)		
			Inductive load $\cos\phi=0.4$)		
	Electrical life	100,000 cycles	,		
A ON delay	0 to 9999 seconds				
time					
A OFF delay	0 to 9999 seconds				
time					
A1, A2 output	For A1 (or A2) output, A11 type, A12 type, A21 type and/or A22 type can be				
allocations	allocated. Output is OR output.				
Output ON time/		•	set, A1 (or A2) output can be turned		
OFF time when	•		(or A2) output is ON.		
A1/A2 output ON	5	,			
Conductivity input	Detects actuator trou	ble.			
error alarm	Even if conductivity i	nput error alarm	time has elapsed, and if conductivit		
		•	onductivity input error alarm band, th		
		•	as occurred, and writes Status flag		
	(A1, A2 conductivity i				
		•	be read by reading Status flag 2 (A		
	A2 conductivity input				
			- <i>i</i>		
		ror alarm is disa	bled during Conductivity Zero or Spa		
	adjustment.				
			bled only when $\mathcal{E}_{\mathbf{z}} {\leftarrow} \mathcal{L}$ (Conductivit		
		, ,	conductivity input high limit action) i		
	selected in [A11, A12	- A21 A22 type (nn 77 731		

Transmission Output 1 (Option Code: TA)

Transmission Output 1	•	ty or temperature to analog signal every input			
	sampling period, and	outputs the value in current.			
	If $\Box F F \square$ (No temperature compensation) is selected in [Temperature				
	compensation method (p.30)], and if $\int \mathcal{E} \vec{n} P$ (Temperature transmission				
	is selected in [Transmission output 1 type (p.32)], Transmission output 1				
	value will differ depen	ding on the selection in [Temperature Display when			
	no temperature comp	ensation (p.34)] as follows.			
	・If <i>ロドド</i> □ (Unlit) o	or $\neg \neg \neg d$ (Reference temperature) is selected, the			
	value set in [Refer	ence temperature (p.30)] will be output.			
	• If PB	red value) is selected, the measured value will be			
	output.				
	If Transmission output	t 1 high limit and low limit are set to the same value,			
	Transmission output 1 will be fixed at 4 mA DC.				
	Resolution 12000				
	Current	4 to 20 mA DC (Load resistance: Max. 550 Ω)			
	Output accuracy	Within ±0.3% of Transmission output 1 span			
Transmission	Fine adjustment of the	e Transmission output 1 can be performed via			
output 1 adjustment	Transmission output 1	I Zero and Span adjustments.			
Transmission	Selects Transmission	output 1 status when calibrating conductivity.			
output 1 status	Last value HOLD	Retains the last value before conductivity			
when calibrating	when calibrating calibration, and output				
	Set value HOLD	Outputs the value set in [Transmission output 1 value			
		HOLD when calibrating].			
	Measured value	Outputs the measured value when calibrating			
		conductivity.			

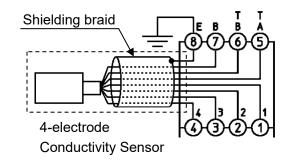
Transmission Output 2 (Option Code: TA2)

Transmission Output 2	Converting conductivity or temperature to analog signal every input			
	sampling period, and outputs the value in current.			
	If <i>aFF</i> (No tempe	erature compensation) is selected in [Temperature		
	compensation metho	od (p.30)], and if <i>にとうP</i> (Temperature transmission)		
is selected in [Transmission output 2 type (p.32)], Transmission o				
	value will differ depe	nding on the selection in [Temperature Display when		
		pensation (p.34)] as follows.		
	・If <i>ュキキ</i> ロ (Unlit) o	or $\neg f d \square$ (Reference temperature) is selected, the		
	-	ence temperature (p.30)] will be output.		
	• If <i>₽'ង</i> ⊡⊡ (Measu	red value) is selected, the measured value will be		
	output.			
	If Transmission output 2 high limit and low limit are set to the same valu			
		2 will be fixed at 4 mA DC.		
	Resolution 12000			
	Current	4 to 20 mA DC (Load resistance: Max. 550 Ω)		
	Output accuracy	Within $\pm 0.3\%$ of Transmission output 2 span		
Transmission	Fine adjustment of the	adjustment of the Transmission output 2 can be performed via		
output 2 adjustment	Transmission output 2	2 Zero and Span adjustments.		
Transmission	Selects Transmission	output 2 status when calibrating conductivity.		
output 2 status	Last value HOLD	Retains the last value before conductivity		
when calibrating		calibration, and outputs it.		
	Set value HOLD	Outputs the value set in [Transmission output 2 value		
		HOLD when calibrating].		
	Measured value	Outputs the measured value when calibrating		
		conductivity.		

13. Troubleshooting

If any malfunction occurs, refer to the following items after checking that power is being supplied to the WIL-102-ECH.

13.1 Indication


Problem	Possible Cause	Solution
The Conductivity/	^っ ロっと (No Indication) is selected	Select RLL (Conductivity/
Temperature Display is	in [Display selection (p.34)].	Temperature).
unlit.	The time set in [Indication time	If any key is pressed while displays
	(p.34)] has passed.	are unlit, they will re-light.
		Set the indication time to a suitable
		time-frame.
The Conductivity/	$U \neg E$ (Enabled) is selected in	Select []]] (Disabled).
Temperature Display is	[Auto-light function (p.34)].	
dark.		
Indication of the	Conductivity calibration and	Perform conductivity calibration
Conductivity/Temperature	temperature calibration may not	and temperature calibration.
Display is unstable or	have finished.	
irregular.	Specifications of 4-electrode	Replace the sensor with a
	Conductivity Sensor may not be	suitable one.
	suitable.	
	There may be equipment that	Keep WIL-102-ECH clear of any
	interferes with or makes noise near	potentially disruptive equipment.
	the WIL-102-ECH.	Try [Grounding of shield wire
		terminal (E)].
Temperature Display is	$\square F F \square$ (Unlit) is selected in	Select '¬/¯ ב' (Reference
unlit.	[Temperature Display when no	temperature) or <i>PB</i>
	temperature compensation (p.34)].	(Measured value).
$[\mathcal{E} \cap \mathcal{G} \]$ is flashing on the	The temperature sensor lead wire	Replace the temperature sensor.
Temperature Display.	is burnt out.	
$[\mathcal{E} \cap \mathcal{G} \mathcal{E}]$ is flashing on the	The temperature sensor lead wire	Replace the temperature sensor.
Temperature Display.	is short-circuited.	
$[\mathcal{E} \cap \mathcal{G} \mathcal{B}]$ is flashing on the	Measured temperature has	Check the environment of
Temperature Display.	exceeded 110.0℃.	measurement location.
$[\mathcal{E} \cap \mathcal{G} \cap]$ is flashing on the	Measured temperature is less than	Check the environment of
Temperature Display.	0.0℃.	measurement location.
[E ー ー /] is indicating on	Internal memory is defective.	Contact our agency or us.
the Conductivity Display.		

• Grounding of shield wire terminal (E)

If the indication fluctuates due to noise, ground the shield wire terminal (E).

However, depending on the installation environment, the symptom may not be improved.

In this case, disconnect the grounding of the shield wire terminal (E) and return it to the original state. (Depending on the type of sensor, the cable for the shield wire terminal (E) may not be available.)

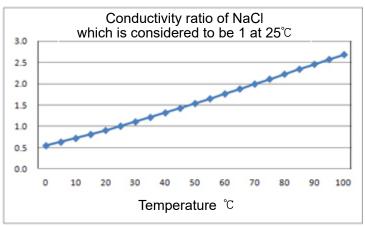
13.2 Key Operation

Problem	Possible Cause	Solution
None of the set values can	$L \Box c$ / (Lock 1) is selected in [Set	Select []]] (Unlock).
be changed.	value lock (p.31)].	
The values do not change		
by the \bigtriangleup , \bigtriangledown keys.		
Only A value can be	$L \Box \Box \Box \overline{L}'$ (Lock 2) is selected in [Set	Select (Unlock).
set. Other settings are	value lock (p.31)].	
impossible.		
The values do not change		
by the \bigtriangleup , \bigtriangledown keys.		

13.3 Communication

Check that power is being supplied to the master and slave that customers use. If communication failure still occurs, check the following.

Problem	Possible Cause	Solution
Communication failure	Communication cable is not	Check the communication cable
	securely connected, or is	and connector.
	disconnected/defective.	
	Incorrect wiring of the communication cable and/or	Check the communication cable
	connector	and connector.
	Imperfect contact between the	Check the communication cable
	communication cable and the	and connector.
	connector, or between the	
	communication connector and	
	instrument port	
	Communication speed of the slave	Check the communication speed
	does not match that of the master.	of the slave and master.
	The data bit, parity and stop bit of	Check the data bit, parity and
	the master do not correspond to	stop bit of the master and the
	those of the slave.	slave.
	The instrument number (address)	Check the instrument number
	of the slave does not correspond	(address) of the slave and
	to that of the command.	command.
	The instrument numbers	Check the instrument numbers
	(addresses) are duplicated in	(addresses) of the slave.
	multiple slaves.	
	Make sure that the program is	Check the program.
	appropriate for the transmission	
	timing.	
Although communication	A non-existent command code has	Check the command code.
is occurring, the response	been sent.	
is negative acknowledge-	The setting command data	Check the setting range of the
ment.	exceeds the setting range of the	slave.
	slave.	
	The WIL-102-ECH cannot be set	Check the slave status.
	during calibration mode.	
	The WIL-102-ECH is in the front	Return the unit to Conductivity/
	keypad operation setting mode.	Temperature Display Mode.


14. Temperature Compensation Method

14.1 Temperature Compensation Based on the Temperature Characteristics of NaCI

When the main ingredient of the salt contained in a sample is NaCl, use temperature compensation method based on the temperature characteristics of NaCl.

Conductivity of NaCl solution varies with the ratio based on the conductivity at 25° C as shown below. The conductivity at 25° C is calculated on the basis of the conductivity ratio at each temperature in (Table 14.1-1).

(Table 14.1-1)						
Tempera-	Conductivity	Coeffi-				
ture (°C)	ratio of NaCI	cient				
0	0.542	1.845				
5	0.626	1.596				
10	0.715	1.399				
15	0.806	1.240				
20	0.902	1.109				
25	1.000	1.000				
30	1.101	0.908				
35	1.205	0.830				
40	1.312	0.762				
45	1.420	0.704				
50	1.531	0.653				
55	1.643	0.609				
60	1.757	0.569				
65	1.872	0.534				
70	1.987	0.503				
75	2.103	0.476				
80	2.219	0.451				
85	2.335	0.428				
90	2.450	0.408				
95	2.564	0.390				
100	2.677	0.374				

(Fig.14.1-1)

14.2 How to Input Temperature Coefficient

Temperature compensation is conducted using temperature coefficient (%/ $^{\circ}$ C) and a randomly selected reference temperature.

Conductivity of the solution varies depending on the temperature.

If temperature rises by 1°C, the conductivity rises by 2% at 25°C basis in general.

Temperature coefficient differs depending on the solution type and its concentration, which ranges from 0.50 to 2.50.

By inputting the temperature coefficient, temperature compensation can be calculated to find the conductivity at 25° .

Temperature coefficient 2.00 %/ $^{\circ}$ can be used for most of solutions.

If temperature coefficient of solution is already-known, enter the value. (Table 14.2-1)

If the conductivity at an arbitrary temperature $T^{\circ}C$ is already-known, and if reference temperature is $ST^{\circ}C$, conductivity $C_{(ST)}$ at the reference temperature can be obtained according to the following formula.

$$C_{(ST)} = \frac{C_{(T)}}{(1 + 0.01 \times \alpha \times (T - ST))}$$

 $C_{(ST)}$: Conductivity of the solution at $ST^{\circ}C$

 $C_{(T)}$: Conductivity of the solution at T[°]C

- α : Temperature coefficient of conductivity (%)
- *T*: Arbitrary temperature $T^{\circ}C$
- ST: Reference temperature ST[°]C

(Tah	، ما	11	2-1	1)
(Tab	ie 1	14.	Z-'	1)

(Table 14.2-1)							-			
Sub-	Tempe-	Concen-	Conduc-	Temperature	Sub-	Tempe-	Concen-	Conduc-	Temperature	
stance	rature	tration	tivity	coefficient	stance	rature	tration	tivity	coefficient	
	(°C)	Wt%	S/m	(%/℃)		(°C)	Wt%	S/m	(%/°C)	
		5	19.69	2.01			5	6.72	2.17	
		10	31.24	2.17			10	12.11	2.14	
NaOH	15	15	34.63	2.49	NaCl	18	15	16.42	2.12	
		20	32.70	2.99			20	19.57	2.16	
		30	20.22	4.50			25	21.35	2.27	
		40	11.64	6.48			5	4.09	2.36	
		25.2	54.03	2.09	Na ₂ SO ₄	18	10	6.87	2.49	
КОН	15	29.4	54.34	2.21			15	8.86	2.56	
Ron	10	33.6	52.21	2.36			5	4.56	2.52	
		42	42.12	2.83	Na ₂ CO ₃	18	10	7.05	2.71	
		0.1	0.0251	2.46			15	8.36	2.94	
		1.6	0.0867	2.38			5	6.90	2.01	
NH3	15	4.01	0.1095	2.50			10	13.59	1.88	
		8.03	0.1038	2.62	KCI	18	15	20.20	1.79	
		16.15	0.0632	3.01			20	26.77	1.68	
		1.5	1.98	0.72			21	28.10	1.68	
HF	18	4.8	5.93	0.66			5	4.65	2.06	
		24.5	28.32	0.58	KBr	15	10	9.28	1.94	
		5	39.48	1.58			20	19.07	1.77	
	10	10	63.02	1.56			3.25	5.07	2.07	
HCI	18	20	76.15	1.54	KCN	15	6.5	10.26	1.98	
		30	66.20	1.52			-	-	-	
		5	20.85	1.21			5	9.18	1.98	
		10	39.15	1.28		₄CI 18	10	17.76	1.86	
	+ 18	20	65.27	1.45	NH4CI		15	25.86	1.71	
		40	68.00	1.78			20	33.65	1.61	
H_2SO_4		50	54.05	1.93		25	40.25	1.54		
		60	37.26	2.13			5	5.90	2.03	
		80	11.05	3.49			4.5	10	11.17	1.94
		100.14	1.87	0.30	NH4NO3	15	30	28.41	1.68	
		-	-	-			50	36.22	1.56	
		6.2	31.23				2.5	10.90	2.13	
		12.4	54.18		0.00	10	5	18.90	2.16	
HNO ₃	18	31	78.19		CuSO ₄	18	10	32.00	2.18	
	_	49.6	63.41				15	42.10	2.31	
		62	49.64				10	15.26	1.69	
<u> </u>		10	5.66				15	16.19	1.74	
		20	11.29				20	16.05	1.79	
H ₃ PO ₄	15	40	20.70		CH₃COOH	18	30	14.01	1.86	
		45	20.87				40	10.81	1.96	
		50	20.73				60	4.56	2.06	

15. Character Tables

The following shows our character tables. Use data column for your reference.

Setting Groups

Character	Setting Group
F.n.c. I	Conductivity Input Group
F.n.c.2	Temperature Input Group
a.f.E.r	Basic Function Group

Temperature Calibration Mode

Character	Setting Item, Setting Range	Factory Default	Data
<u> ちゅ</u> (*)	Temperature calibration	0.0°C	
00	Setting range: -10.0 to 10.0℃		

(*) '- D and temperature are displayed alternately.

Conductivity Calibration Mode

Character	Setting Item, Setting Range Factory Default		Data
RdJI(*1)	Conductivity Zero adjustment value	0.00	
000	See (Table 15-1). (pp.81, 82)		
Fizi_1''-(*2)	Conductivity Span adjustment value	1.000	
1000	Setting range: 0.700 to 1.300		

(*1) $\frac{\pi}{2} \frac{d}{d} \frac{d}{d}$ and conductivity are displayed alternately.

(*2) $\exists a a b a d a$ and conductivity are displayed alternately.

(Table 15-1)

Meas	urement Range	Conductivity Zero Adjustment Value Setting Range
	0.00 to 20.00 mS/cm	-2.00 to 2.00 mS/cm
	0.0 to 200.0 mS/cm	-20.0 to 20.0 mS/cm
	0.0 to 500.0 mS/cm	-50.0 to 50.0 mS/cm
	0 to 500 mS/cm	-50 to 50 mS/cm
	0.000 to 2.000 mS/cm	-0.200 to 0.200 mS/cm
	0.000 to 5.000 mS/cm	-0.500 to 0.500 mS/cm
	0.00 to 50.00 mS/cm	-5.00 to 5.00 mS/cm
	0 to 2000 μ S/cm	-200 to 200 µS/cm
	0 to 5000 μ S/cm	-500 to 500 <i>µ</i> S/cm
	0.000 to 2.000 S/m	-0.200 to 0.200 S/m
Cell constant	0.00 to 20.00 S/m	-2.00 to 2.00 S/m
1.0/cm	0.00 to 50.00 S/m	-5.00 to 5.00 S/m
1.0/Cill	0.0 to 50.0 S/m	-5.0 to 5.0 S/m
	0 to 2000 mS/m	-200 to 200 mS/m
	0.000 to 5.000 S/m	-0.500 to 0.500 S/m
	0.0 to 200.0 mS/m	-20.0 to 20.0 mS/m
	0.0 to 500.0 mS/m	-50.0 to 50.0 mS/m
	0.0 to 20.0 g/L	-2.0 to 2.0 g/L
	0 to 200 g/L	-20 to 20 g/L
	0 to 500 g/L	-50 to 50 g/L
	0 to 2000 mg/L	-200 to 200 mg/L
	0 to 5000 mg/L	-500 to 500 mg/L

0.0 to 200.0 mS/cm	-20.0 to 20.0 mS/cm
0.0 to 500.0 mS/cm	-50.0 to 50.0 mS/cm
0 to 2000 mS/cm	-200 to 200 mS/cm
0.00 to 20.00 S/m	-2.00 to 2.00 S/m
0.00 to 50.00 S/m	-5.00 to 5.00 S/m
0.0 to 200.0 S/m	-20.0 to 20.0 S/m
0 to 200 g/L	-20 to 20 g/L
0 to 500 g/L	-50 to 50 g/L
0 to 2000 g/L	-200 to 200 g/L
nity 0.00 to 4.00%	-0.40 to 0.40%
).00 to 20.00%	-2.00 to 2.00%
	0.0 to 500.0 mS/cm 0 to 2000 mS/cm 0.00 to 20.00 S/m 0.00 to 50.00 S/m 0.0 to 200.0 S/m 0 to 200 g/L 0 to 500 g/L 0 to 2000 g/L nity 0.00 to 4.00%

Transmission Output 1 Adjustment Mode

Character	Setting Item, Setting Range	Factory Default	Data	
RUEI	Transmission output 1 Zero	0.00%		
<u> </u>	adjustment value			
	Setting range: ±5.00% of Transmission	output 1 span		
គ.15 /	Transmission output 1 Span	0.00%		
000	adjustment value			
	Setting range: ±5.00% of Transmission output 1 span			

Transmission Output 2 Adjustment Mode

Character	Setting Item, Setting Range	Factory Default	Data
RJEZ	Transmission output 2 Zero	0.00%	
0.00	adjustment value		
	Setting range: ±5.00% of Transmission output 2 span		
8452	Transmission output 2 Span 0.00%		
000	adjustment value		
	Setting range: ±5.00% of Transmission	output 2 span	

Conductivity Input Group

Character	Setting Item, Setting Range	Factory Default	Data		
ELL	Sensor cell constant	1.0/cm			
	Selection item:				
	□□□ <i>l□</i> : 1.0/cm				
	<i>□ IQO</i> : 10.0/cm				
c o E F	Cell constant correction value	1.000			
1000	Setting range: 0.001 to 5.000				
	Measurement unit	Conductivity (mS/cm, μ S/cm)			
conð	Selection item:				
	_{ニロロ} 님:Conductivity (mS/cm, <i>µ</i> S/cm)				
	'っ' □□□: Conductivity (S/m, mS/m)				
	<i>っと用</i> …:Seawater salinity (%)				
	トロン Salinity (%)				
	「 Ґ ′¬□ :TDS conversion (g/L, mg/L)				

Character	Setting Item, Setting	g Range	Factory Default	Data
กักกนี	Measurement range	<u> </u>	20.00 mS/cm	
20.00	(Table 15-2)			
	When sensor cell cor	nstant 1.0/cm	n is selected:	
		Selection		
	Measurement Unit	item	Measurement Range	
		20.00	0.00 to 20.00 mS/cm	
		2000	0.0 to 200.0 mS/cm	
		5000	0.0 to 500.0 mS/cm	
		500	0 to 500 mS/cm	
	Conductivity	2000	0.000 to 2.000 mS/cm	
	(mS/cm, μ S/cm)	5000	0.000 to 5.000 mS/cm	
		5000	0.00 to 50.00 mS/cm	
		2000	0 to 2000 <i>µ</i> S/cm	
		5000	0 to 5000 <i>µ</i> S/cm	
		2.000	0.000 to 2.000 S/m	
		2000	0.00 to 20.00 S/m	
		5000	0.00 to 50.00 S/m	
	Conductivity	<u> </u>	0.0 to 50.0 S/m	
	(S/m, mS/m)	2000	0 to 2000 mS/m	
		5000	0.000 to 5.000 S/m	
		2000	0.0 to 200.0 mS/m	
		5000	0.0 to 500.0 mS/m	
		200	0.0 to 20.0 g/L	
		200	0 to 200 g/L	
	TDS conversion	500	0 to 500 g/L	
	(g/L, mg/L)	2000	0 to 2000 mg/L	
		5000	0 to 5000 mg/L	
	Seawater salinity (%)	00 UL	0.00 to 4.00%	
	NaCl salinity (%)	20.00	0.00 to 20.00%	
	When sensor cell cor	Selection	m is selected:	
	Measurement Unit	item	Measurement Range	
		2000	0.0 to 200.0 mS/cm	
	Conductivity	5000	0.0 to 500.0 mS/cm	
	(mS/cm)	2000	0 to 2000 mS/cm	
		20.00	0.00 to 20.00 S/m	
		5000	0.00 to 50.00 S/m	
	(S/m, mS/m)	2000	0.0 to 200.0 S/m	
	TRO	005	0 to 200 g/L	
	TDS conversion	<u> </u>	0 to 500 g/L	
	(g/L)	2000	0 to 2000 g/L	
	Seawater salinity (%)	00	0.00 to 4.00%	
	NaCl salinity (%)	20.00	0.00 to 20.00%	
Гдчь	TDS conversion factor		0.50	
		1.00		
	Setting range: 0.30 to	1.00		

Character	Setting Item, Setting Range	Factory Default	Data	
RIF	A11 type	No action		
	Selection item:			
	E = E : No action E = L : Conductivity input low limit action			
	$E \subseteq H$: Conductivity input high limit a			
	「 [「] [「] [「] [「] [「] [」] [」] : Temperature input low limit ac 「 [「] [「] [「] [」] [」] [」] : Temperature input high limit a			
	$\mathcal{E} = \mathcal{A} \mathcal{I}$: Err output			
	FRIL: Fail output			
	E こ H に : Conductivity input High/Low I			
	/ ^デ ービー: Temperature input High/Low I	imits independent action		
8 12F	A12 type	No action		
	Selection item: Same as those of A11 t	ype (p.84)		
82 IF	A21 type	No action		
	Selection item: Same as those of A11 t	ype (p.84)		
822F	A22 type	No action		
	Selection item: Same as those of A11 t	ype (p.84)		
811	A11 value	Conductivity input: 0.00 mS/cm		
<i>000</i>		Temperature input: 0.0℃		
	Setting range:			
	Conductivity input: Measurement range low limit to Measurement range high limit (*1)			
	Temperature input:			
	0.0 to 100.0°C (*2)			
R 120	A12 value	Conductivity input: 0.00 mS/cm		
<i>000</i>		Temperature input: 0.0℃		
	Setting range: Same as those of A11 va	<u> </u>		
<u>82 (</u>	A21 value	Conductivity input: 0.00 mS/cm		
		Temperature input: 0.0°C		
	Setting range: Same as those of A11 va			
8220	A22 value	Conductivity input: 0.00 mS/cm		
0.00	Temperature input: 0.0°C			
8118	Setting range: Same as those of A11 va A11 hysteresis type	Reference value		
531 F	Selection item:			
	c d' F: Medium value			
	ー C C F : Medium value ー ー ー ー ー ・ Reference value			

(*1) The measurement unit and decimal point place follow the measurement range.

(*2) The placement of the decimal point does not follow the selection. It is fixed.

Character	Setting It	em, Setting Range	Factory Default	Data
RIU	A11 ON side	····; ••••••••; • •••••;9•	Conductivity input: 0.01 mS/cm	
			Temperature input: 1.0℃	
	(Table 15-3)			
	Conductivit	y input:		
	Me	asurement Range	Setting Range	
		0.00 to 20.00 mS/cm	0.00 to 2.00 mS/cm	
		0.0 to 200.0 mS/cm	0.0 to 20.0 mS/cm	
		0.0 to 500.0 mS/cm	0.0 to 50.0 mS/cm	
		0 to 500 mS/cm	0 to 50 mS/cm	
		0.000 to 2.000 mS/cm	0.000 to 0.200 mS/cm	
		0.000 to 5.000 mS/cm	0.000 to 0.500 mS/cm	
		0.00 to 50.00 mS/cm	0.00 to 5.00 mS/cm	
		0 to 2000 <i>µ</i> S/cm	0 to 200 <i>µ</i> S/cm	
		0 to 5000 µS/cm	0 to 500 <i>µ</i> S/cm	
	Cell	0.000 to 2.000 S/m	0.000 to 0.200 S/m	
	constant	0.00 to 20.00 S/m	0.00 to 2.00 S/m	
	1.0/cm	0.00 to 50.00 S/m	0.00 to 5.00 S/m	
		0.0 to 50.0 S/m	0.0 to 5.0 S/m	
		0 to 2000 mS/m	0 to 200 mS/m	
		0.000 to 5.000 S/m	0.000 to 0.500 S/m	
		0.0 to 200.0 mS/m	0.0 to 20.0 mS/m	
		0.0 to 500.0 mS/m	0.0 to 50.0 mS/m	
		0.0 to 20.0 g/L	0.0 to 2.0 g/L	
		0 to 200 g/L 0 to 500 g/L	0 to 20 g/L 0 to 50 g/L	
		0 to 2000 mg/L	0 to 200 mg/L	
		0 to 5000 mg/L	0 to 500 mg/L	
		0.0 to 200.0 mS/cm	0.0 to 20.0 mS/cm	
		0.0 to 500.0 mS/cm	0.0 to 50.0 mS/cm	
		0 to 2000 mS/cm	0 to 200 mS/cm	
	Cell	0.00 to 20.00 S/m	0.00 to 2.00 S/m	
	constant	0.00 to 50.00 S/m	0.00 to 5.00 S/m	
	10.0/cm	0.0 to 200.0 S/m	0.0 to 20.0 S/m	
		0 to 200 g/L	0 to 20 g/L	
		0 to 500 g/L	0 to 50 g/L	
		0 to 2000 g/L	0 to 200 g/L	
		salinity 0.00 to 4.00%	0.00 to 0.40%	
	NaCl salini	ty 0.00 to 20.00%	0.00 to 2.00%	
	Temperatur	e input:		
	Me	asurement Range	Setting Range	
	0.0 to 100.	0°C	0.0 to 10.0℃	
R _	A11 OFF side	Conductivity input: 0.01	mS/cm, Temperature input: 1.0℃	
		e: Same as those of A11 (1
8128	A12 hysteresi	s type	Reference value	
5 <i>31 F</i>	•	m: Same as those of A11	hysteresis type (p.84)	
8 120	A12 ON side		mS/cm, Temperature input: 1.0℃	
<u> </u>	Setting range	e: Same as those of A11 (ON side (P.85)	
R 12L			mS/cm, Temperature input: 1.0°C	
<u>□0</u> 0 (Setting rang	e: Same as those of A11 (ON side (P.85)	
82 Id	A21 hysteresi	s type	Reference value	
5 <i>31 F</i>	Selection ite	m: Same as those of A11	hysteresis type (p.84)	

Character	Setting Item, Setting Range	Factory Default	Data	
R2 IU		mS/cm, Temperature input: 1.0°C		
	Setting range: Same as those of A11 C			
RZ IL	A21 OFF side Conductivity input: 0.01			
	Setting range: Same as those of A11 ON side (P.85)			
8228	A22 hysteresis type	Reference value		
5d1 F	Selection item: Same as those of A11			
8220		mS/cm, Temperature input: 1.0°C		
822L	Setting range: Same as those of A11 C A22 OFF side Conductivity input: 0.01	· · · ·		
816	Setting range: Same as those of A11 C			
	A11 ON delay time	0 seconds		
	Setting range: 0 to 9999 seconds			
A 120	A12 ON delay time	0 seconds		
	Setting range: 0 to 9999 seconds			
A2 lo	A21 ON delay time	0 seconds		
	Setting range: 0 to 9999 seconds			
8220	A22 ON delay time	0 seconds		
	Setting range: 0 to 9999 seconds			
R I Ic	A11 OFF delay time	0 seconds		
	Setting range: 0 to 9999 seconds			
8 12c	A12 OFF delay time	0 seconds		
	Setting range: 0 to 9999 seconds			
82 le	A21 OFF delay time	0 seconds		
	Setting range: 0 to 9999 seconds			
<i>822c</i>	A22 OFF delay time	0 seconds		
	Setting range: 0 to 9999 seconds			
Riin	A11 High/Low limits independent	Conductivity input: 0.00 mS/cm		
<i>000</i>	lower side span Conductivity input: Measurement range	Temperature input: 0.0℃		
	Measurement range			
	Temperature input: 0.0 to 100.0°C (*2)	g		
	A12 High/Low limits independent	Conductivity input: 0.00 mS/cm		
8 12n	lower side span	Temperature input: 0.0℃		
0.00	Setting range: Same as those of A11 F lower side span (p.86)	ngn/Low limits independent		
	A21 High/Low limits independent	Conductivity input: 0.00 mS/cm		
R2 In	lower side span	Temperature input: 0.0℃		
<i>000</i>	Setting range: Same as those of A11 F	ligh/Low limits independent		
	lower side span (p.86)	Conductivity input: 0.00 m2/am		
822~	A22 High/Low limits independent lower side span	Conductivity input: 0.00 mS/cm Temperature input: 0.0℃		
	Setting range: Same as those of A11 F			
	lower side span (p.86)			
RIP	A11 High/Low limits independent	Conductivity input: 0.00 mS/cm		
<i>000</i>	upper side span Conductivity input: Measurement range	Temperature input: 0.0℃		
	Measurement range			
	Temperature input: 0.0 to 100.0°C(*2)			
	A12 High/Low limits independent	Conductivity input: 0.00 mS/cm		
8 122	upper side span	Temperature input: 0.0℃		
000	Setting range: Same as those of A11 F upper side span (p.86)	ngn/Low limits independent		
	A21 High/Low limits independent	Conductivity input: 0.00 mS/cm		
R2 IP	upper side span	Temperature input: 0.0℃		
<u> </u>	Setting range: Same as those of A11 F			
	upper side span (p.86)	-		
(*1) The meas	urement unit and decimal point place follow the r	neasurement range		

(*1) The measurement unit and decimal point place follow the measurement range. (*2) The placement of the decimal point does not follow the selection. It is fixed.

Character	Setting	tem, Setting Range	Factory Default	Data
RZZP	-	/ limits independent	Conductivity input: 0.00 mS/cm	
000	upper side sp		Temperature input: 0.0℃	
	Setting rang	e: Same as those of A11 F upper side span (p.86)	ligh/Low limits independent	
R ; ;H	A11 hysteres		mS/cm, Temperature input: 1.0°C	
00 /	(Table 15-4)			
	Conductivit	ty input:		
	Ме	asurement Range	Setting Range	
		0.00 to 20.00 mS/cm	0.01 to 2.00 mS/cm	
		0.0 to 200.0 mS/cm	0.1 to 20.0 mS/cm	
		0.0 to 500.0 mS/cm	0.1 to 50.0 mS/cm	
		0 to 500 mS/cm	1 to 50 mS/cm	
		0.000 to 2.000 mS/cm	0.001 to 0.200 mS/cm	
		0.000 to 5.000 mS/cm	0.001 to 0.500 mS/cm	
		0.00 to 50.00 mS/cm	0.01 to 5.00 mS/cm	
		0 to 2000 µS/cm	1 to 200 <i>µ</i> S/cm	
		0 to 5000 µS/cm	1 to 500 µS/cm	
		0.000 to 2.000 S/m	0.001 to 0.200 S/m	
	Cell	0.00 to 20.00 S/m	0.01 to 2.00 S/m	
	constant	0.00 to 50.00 S/m	0.01 to 5.00 S/m	
	1.0/cm	0.0 to 50.0 S/m	0.1 to 5.0 S/m	
		0 to 2000 mS/m	1 to 200 mS/m	
		0.000 to 5.000 S/m	0.001 to 0.500 S/m	
		0.0 to 200.0 mS/m	0.1 to 20.0 mS/m	
		0.0 to 500.0 mS/m 0.0 to 20.0 g/L	0.1 to 50.0 mS/m 0.1 to 2.0 g/L	
		0 to 200 g/L	1 to 20 g/L	
		0 to 500 g/L	1 to 50 g/L	
		0 to 2000 mg/L	1 to 200 mg/L	
		0 to 5000 mg/L	1 to 500 mg/L	
		0.0 to 200.0 mS/cm	0.1 to 20.0 mS/cm	
		0.0 to 500.0 mS/cm	0.1 to 50.0 mS/cm	
		0 to 2000 mS/cm	1 to 200 mS/cm	
	Cell	0.00 to 20.00 S/m	0.01 to 2.00 S/m	
	constant	0.00 to 50.00 S/m	0.01 to 5.00 S/m	
	10.0/cm	0.0 to 200.0 S/m	0.1 to 20.0 S/m	
		0 to 200 g/L	1 to 20 g/L	
		0 to 500 g/L	1 to 50 g/L	
		0 to 2000 g/L	1 to 200 g/L	
		salinity 0.00 to 4.00%	0.01 to 0.40%	
		ity 0.00 to 20.00%	0.01 to 2.00%	
	Temperatur	•	Ostting Damag	
	0.0 to 100.	asurement Range	Setting Range 0.1 to 10.0℃	
R IZK	A12 hysteres	is Conductivity input: 0.01	mS/cm, Temperature input: 1.0°C	
00		e: Same as those of A11 h		
HI SA	A21 hysteres		mS/cm, Temperature input: 1.0℃	
		e: Same as those of A11 h		
H22H	A22 hysteres		mS/cm, Temperature input: 1.0℃	
		e: Same as those of A11 h		
lErr		when input errors occur	Disabled	
oFF[]	0 <u>0 0</u> .: En			
	<i>□FF</i> ⊡ : Dis	sabled		

Character	Setting Item, Setting Range	Factory Default	Data
FIFI	Conductivity input filter time constant	0.0 seconds	
	Setting range: 0.0 to 10.0 seconds		
E50	Conductivity input sensor correction	0.00 mS/cm	
<i>000</i>	Setting range: ±10% of measurement spa	an (*)	
467-	3-electrode Conductivity Sensor resistance	0Ω	
	Setting range: 0 to 100 Ω		
dFcT	Conductivity inputs for moving average	20	
05	Setting range: 1 to 120		

(*) The measurement unit and decimal point place follow the measurement range.

Temperature Input Group

Character	Setting Item, Setting Range	Factory Default	Data
l'eñ	Temperature compensation method	NaCl	
nReL	ヮ <i>吊</i> ᢏと: Temperature compensation is cond		
	characteristics of NaCl. Select whe	en the main salt ingredient	
	in a sample is NaCl.		
	$f \models \square E$: Temperature compensation is conc coefficient (%/ C) and a randomly s		
	coefficient (%/℃) and a randomly selected reference temperature. ロデチニ: No temperature compensation		
tcoE	Temperature coefficient	2.00 %/°C	
2.00	Setting range: -5.00 to 5.00 %/℃		
hīnd	Reference temperature	25.0℃	
250	Setting range: 5.0 to 95.0℃ (*)		
dP2	Decimal point place	1 digit after decimal point	
<i>0.0</i>	$\Box \Box \Box \Box$: No decimal point		
	$\Box \Box \Box \Box \Box \Box$: 1 digit after decimal point		
cont	Pt100 input wire type	3-wire type	
PF[]]3	Pr Z : 2-wire type		
<u> </u>	Pr 3 : 3-wire type		
c 85L	Cable length correction	0.0 m	
	Setting range: 0.0 to 100.0 m		
chEc mana	Cable cross-section area	0.30 mm ²	
	Setting range: 0.10 to 2.00 mm ²		
FIFZ	Temperature input filter time constant	0.0 seconds	
	Setting range: 0.0 to10.0 seconds		
dFcl	Temperature inputs for moving average	20	
20	Setting range: 1 to 120		

(*) The placement of the decimal point follows the selection.

Basic Function Group

Character	Setting Item, Setting Range	Factory Default	Data
Lock	Set value lock	Unlock	
	Electric : Unlock		
	と <i>回こ </i>		
	<i>とっこぞ</i> : Lock 2		
	Lαc∃ : Lock 3		
c74L	Communication protocol	Shinko protocol	
noñL	הבהב : Shinko protocol		
	ਨੋਕਟੋਸ਼ : MODBUS ASCII mode		
	ನ್ರಾರ್ಥ : MODBUS RTU mode		
cñna	Instrument number	0	
	Setting range: 0 to 95		

Character	Setting Item, Setting Ra	ange	Factory Default	Data
574P	Communication speed		9600 bps	
<u> </u>	55 : 9600 bps		•	
	<i>∐ /∃근</i> :19200 bps			
	<i>⊟∃8Ч</i> : 38400 bps			
e AFT	Data bit/Parity		7 bits/Even	
7E8n	<u>ອືດລດ</u> : 8 bits/No parity			
	י ד bits/No parity			
	8EBn : 8 bits/Even			
	기든님께 : 7 bits/Even			
	ឱ್ರದರ : 8 bits/Odd ೌಧರರ : 7 bits/Odd			
<u>รลี</u> ร์ไ	Stop bit		1 bit	
			1 Bit	-
•	$\Box \Box c'$: 2 bits			
Fra I	Transmission output 1 type		Conductivity transmission	
Ec	Ec : Conductivity transm	nission		
	「E デF : Temperature transr	nission		
[-H	Transmission output 1 high lir	mit	20.00 mS/cm	
2000	Conductivity transmission: Tra			
		,	nge high limit	
	Temperature transmission: Tra			
	Transmission output 1 low lim		0.00 mS/cm	-
	Conductivity transmission: Co	•	utput 1 high limit	
	Temperature transmission: 0.0			
Frad	Transmission output 2 type		Temperature transmission	
reāp	Ec :: Conductivity transm	nission		-
	「E 売戸 : Temperature transr			
ГгН2	Transmission output 2 high lir		100.0℃	_
100.0	Conductivity transmission: Tra		•	
			nge high limit	
7 7 7	Temperature transmission: Tra			
Frl2	Transmission output 2 low lim		0.0°C	-
	Conductivity transmission: Co		utput 2 high limit	
	Temperature transmission: 0.0			
Fre I	Transmission output 1 status		Last value HOLD	
ЬЕРН	when calibrating		_	
	<i>ЪЕFH</i> :Last value HOLD			-
	<i>与EFH</i> :Set value HOLD			
·	무법H : Measured value			
[Transmission output 1 value		ty transmission: 0.00 mS/cm	
000	HOLD when calibrating		re transmission: 0.0°C	
	Conductivity transmission: Con	•	-	
	Conductivity range high limit Temperature transmission: 0.0 to 100.0℃			
Fred	Transmission output 2 status		Last value HOLD	
BEFH	when calibrating			
	<i>とEFH</i> : Last value HOLD			
	<i>与EFH</i> :Set value HOLD			
	₽₩₩ : Measured value	1 -		
[-52	Transmission output 2 value		ty transmission: 0.00 mS/cm	
	HOLD when calibrating Conductivity transmission: Con		re transmission: 0.0°C	4
			ige high limit	
	Temperature transmission: 0.0			

Character	Setting Item, Setting Range	Factory Default	Data
	Auto-light function	Disabled	
	: Disabled		
	<u> ビーE</u> : Enabled		
di SP	Display selection	Conductivity/Temperature	
ALL.			
	Conductivity Display	Temperature Display	
	RLL Conductivity	Temperature	
	Ec Conductivity	No indication	
	<i>「E売戸</i> No indication	Temperature	
	nenξ No indication	No indication	
ГТ АЕ	Indication time	00.00	
0000	Setting range: 00.00 (Remains lit)	00.00	-
	00.01 to 60.00 (Minutes.)	Seconds)	
oFdP	Temperature Display when	Unlit	
oFF	no temperature compensation		
	Selection item:		
	ロクテアロ: Unlit		
	ーゲゴロ: Reference temperature アゴロロ: Measured value		
R IoF	A1 output allocation	A11 type	
RII	Selection item:	, (11 ())0	
	<i>□ □ □</i> : A11 type		
	$\exists l Z \square$: A12 type		
	<i>₽₴ /</i> □ : A21 type		
	<i>₽₽₽</i> . : A22 type		
	<i>用 Ⅰ用L</i> :A11, A12 types		
	<i>吊己吊L</i> :A21, A22 types		
	<i>튐 I튐근</i> :A11, A21 types		
	<i>ਸਟੋਸਟੋ</i> : A12, A22 types		
	吊上上□ : A11, A12, A21, A22 types		
RZoF	A2 output allocation	A21 type	
82 /	Selection item: Same as those of A1 ou		
oon l	Output ON time when A1 output is ON	0 seconds	
	Setting range: 0 to 9999 seconds		
ooF l	Output OFF time when A1 output is ON	0 seconds	
	Setting range: 0 to 9999 seconds		
oond	Output ON time when A2 output is ON	0 seconds	
	Setting range: 0 to 9999 seconds		
00F2	Output OFF time when A2 output is ON	0 seconds	
R IE	Setting range: 0 to 9999 seconds A1 conductivity input error alarm A	No action	
	type		
·	Selection item:		
	EIEE : No action		
	<i>॑ │ │</i> : A11 type		
	<i>Ħ \2</i> ⊡ : A12 type		
	82 / : A21 type		
	<i>R22</i> ⊡ : A22 type		

Character	Setting Item, Setting Range	Factory Default	Data
R2E	A2 conductivity input error alarm A	No action	
	type		
	Selection item:		
	: No action		
	<i>用 /</i> □ : A11 type		
	<i>用 12</i> □ : A12 type		
	원 <i>근 I</i> [] : A21 type		
	822 :: A22 type		
A IEo	A1 conductivity input error alarm band	0.00 mS/cm	
	when AII output ON		
	Setting range:		
	Conductivity range low limit to Conductivity		
R lof	A1 conductivity input error alarm time	0 seconds	
	when A coutput ON		_
	Setting range: 0 to 9999 seconds or minutes		
A IEc	A1 conductivity input error alarm band	0.00 mS/cm	
<u> </u>	when A output OFF		
	Setting range:		
	Conductivity range low limit to Conductivity		
$B \vdash C$	A1 conductivity input error alarm time	0 seconds	
	when A output OFF		
	Setting range: 0 to 9999 seconds or minutes		
8250	A2 conductivity input error alarm band	0.00 mS/cm	
	when A output ON		_
	Setting range:		
	Conductivity range low limit to Conductivity		
8205	A2 conductivity input error alarm time	0 seconds	
	when A output ON		
	Setting range: 0 to 9999 seconds or minutes		
RZEc	A2 conductivity input error alarm band	0.00 mS/cm	
	when A output OFF		4
	Setting range:		
	Conductivity range low limit to Conductivity		
8265	A2 conductivity input error alarm time	0 seconds	
	when A output OFF		
	Setting range: 0 to 9999 seconds or minutes		
~_ <u> </u>	Conductivity input error alarm time unit	Second(s)	
4Ec 🗌	Selection item:		
	っとこ : Second(s)		
	ōi ヮ□ :Minute(s)		

(*) The time unit depends on the selection in [Conductivity input error alarm time unit].

***** Inquiries *****

For any inquiries about this unit, please contact our agency or the vendor where you purchased the unit after checking the following.

[Example]

• Model ----- WIL-102-ECH

• Serial number ----- No. 195F05000

In addition to the above, please let us know the details of the malfunction, or discrepancy, and the operating conditions.

SHINKO TECHNOS CO., LTD. OVERSEAS DIVISION

Head Office: [URL] [E-mail]

2-5-1, Senbahigashi, Minoo, Osaka, 562-0035, Japan

https://shinko-technos.co.jp/e/ overseas@shinko-technos.co.jp Tel: +81-72-727-6100 Fax: +81-72-727-7006