UNIVERSAL TRANSMITTER SGU SGUW SGUL INSTRUCTION MANUAL

Preface

Thank you for purchasing our SGU, SGUW or SGUL, Universal Transmitter. This manual contains instructions for the mounting, functions, operations and notes when operating the SGU, SGUW or SGUL. To prevent accidents arising from the misuse of this instrument, please ensure the operator receives this manual.

Notes

- This instrument should be used in accordance with the specifications described in the manual. If it is not used according to the specifications, it may malfunction or cause a fire.
- Be sure to follow the warnings, cautions and notices. If they are not observed, serious injury or malfunction may occur.
- The contents of this instruction manual are subject to change without notice.
- Care has been taken to ensure that the contents of this instruction manual are correct, but if there are any doubts, mistakes or questions, please inform our sales department.
- This instrument is designed to be installed on a DIN rail within a control panel. If it is not, measures must be taken to ensure that the operator does not touch power terminals or other high voltage sections.
- Any unauthorized transfer or copying of this document, in part or in whole, is prohibited.
- Shinko Technos Co., Ltd. is not liable for any damage or secondary damage(s) incurred as a result of using this product, including any indirect damage.
SAFETY PRECAUTIONS (Be sure to read these precautions before using our products.)
The safety precautions are classified into categories: "Warning" and "Caution".
Depending on circumstances, procedures indicated by \triangle Caution may result in serious consequences, so be sure to follow the directions for usage.
\triangle Warning
Procedures which may lead to dangerous conditions and cause death or serious injury, if not carried out properly.
\triangle Caution
Procedures which may lead to dangerous conditions and cause superficial to medium injury or physical damage or may degrade or damage the product, if not carried out properly.

\triangle Warning

- To prevent an electrical shock or fire, only Shinko or qualified service personnel may handle the inner assembly.
- To prevent an electrical shock, fire, or damage to instrument, parts replacement may only be undertaken by Shinko or qualified service personnel.
\triangle Safety Precautions
- To ensure safe and correct use, thoroughly read and understand this manual before using this instrument.
- This instrument is intended to be used for industrial machinery, machine tools and measuring equipment. Verify correct usage after purpose-of-use consultation with our agency or main office. (Never use this instrument for medical purposes with which human lives are involved.)
- External protection devices such as protective equipment against excessive temperature rise, etc. must be installed, as malfunction of this product could result in serious damage to the system or injury to personnel. Proper periodic maintenance is also required.
- This instrument must be used under the conditions and environment described in this manual. Shinko Technos Co., Ltd. does not accept liability for any injury, loss of life or damage occurring due to the instrument being used under conditions not otherwise stated in this manual.

Caution with Respect to Export Trade Control Ordinance

To avoid this instrument from being used as a component in, or as being utilized in the manufacture of weapons of mass destruction (i.e. military applications, military equipment, etc.), please investigate the end users and the final use of this instrument. In the case of resale, ensure that this instrument is not illegally exported.

- Installation Precautions

\triangle Caution

This instrument is intended to be used under the following environmental conditions (IEC61010-1): Overvoltage category II, Pollution degree 2
Ensure the mounting location corresponds to the following conditions:

- A minimum of dust, and an absence of corrosive gases
- No flammable, explosive gases
- No mechanical vibrations or shocks
- No exposure to direct sunlight, an ambient temperature of -10 to $55^{\circ} \mathrm{C}\left(14\right.$ to $\left.131^{\circ} \mathrm{F}\right)$ that does not change rapidly, and no icing
- An ambient non-condensing humidity of 35 to 85% RH
- No large capacity electromagnetic switches or cables through which large current is flowing
- No water, oil or chemicals or the vapors of these substances can come into direct contact with the unit.
- When installing this unit within a control panel, please note that the ambient temperature of this unit - not the ambient temperature of the control panel - must not exceed $55^{\circ} \mathrm{C}\left(131^{\circ} \mathrm{F}\right)$. Otherwise the life of electronic components (especially electrolytic capacitor) may be shortened.
Note: Avoid setting this instrument directly on or near flammable material even though the case of this instrument is made of flame-resistant resin.

Wiring Precautions

Caution

- Do not leave bits of wire in the instrument because they could cause a fire and malfunction.
-When wiring, use a crimping pliers and a solderless terminal with an insulation sleeve in which an M3 screw fits.
- Tighten the terminal screw using the specified torque. If excessive force is applied to the screw when tightening, the screw or case may be damaged.
- This instrument does not have a built-in power switch, circuit breaker and fuse. It is necessary to install a power switch, circuit breaker and fuse near the instrument. (Recommended fuse: Time-lag fuse, rated voltage 250 V AC, rated current 2 A)
- For wiring of the AC power source, be sure to use terminals as described in this manual. If the AC power source is connected to incorrect terminals, the unit will be burnt out.
- Do not apply a commercial power source to the sensor which is connected to the input terminal nor allow the power source to come into contact with the sensor.
- Use a thermocouple and compensating lead wire according to the sensor input specifications of this instrument.
- Use the 3-wire RTD according to the sensor input specifications of this instrument.
- When using DC voltage and current input, do not confuse polarity when wiring.
- Keep the input/output wires and power line separate.

■ Operation and Maintenance Precautions

Caution

- Do not touch live terminals. This may cause an electrical shock or problems in operation.
- Turn the power supply to the instrument OFF when retightening the terminal or cleaning. Working on or touching the terminal with the power switched ON may result in severe injury or death due to electrical shock.
- Use a soft, dry cloth when cleaning the instrument.
(Alcohol based substances may tarnish or deface the unit.)
- As the display section is vulnerable, be careful not to put pressure on, scratch or strike it with a hard object.

Characters used in this manual [: No character is indicated (unlit).]

Indication	-1	\square		こ	Э	4	5	\square	7	日	\square		F
Number, ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$	-1	0	1	2	3	4	5	6	7	8	9	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$
Indication	A	\square	L	d	E	F	[H	1	\square	K	L	M
Alphabet	A	B	C	D	E	F	G	H	I	J	K	L	M
Indication	M	\square	ρ	\square	R	5	L	H	V'	W	K	4	'
Alphabet	N	0	P	Q	R	S	T	U	V	W	X	Y	Z

Contents

1. Model 5Page
1.1 Model 5
1.2 How to Read the Model Label
2. Name and Functions 8
2.1 Front Panel 8
2.2 Display Section 9
3. Mounting 10
3.1 External Dimensions (Scale: mm) 10
3.2 Mounting to, and Removal from the DIN Rail 11
4. Wiring 12
4.1 Lead Wire Solderless Terminal 12
4.2 Circuit Configuration 13
4.3 Terminal Arrangement 14
4.4 Wiring 15
5. Display Mode 16
6. Setting Mode 18
6.1 Display Transition in Setting Mode 18
6.2 Input Setting Mode 20
6.3 Output 1 Setting Mode 24
6.4 Output 2 Setting Mode 26
6.5 Instrument Setting Mode 28
6.6 Communication Setting Mode 30
6.7 Custom Display Setting Mode 32
6.8 Manual Mode 32
7. Adjustment 33
7.1 Basic Operation of Adjustment 33
7.2 Adjustment 33
7.2.1 Output 1 Adjustment 33
7.2.2 Output 2 Adjustment 33
8. Operation 34
8.1 Indication after Power-on 34
8.2 Operation 34
8.2.1 Input Indication Range 34
8.2.2 Indication Range of Output 1, Output 2 34
8.2.3 Input Burnout Status 34
8.2.4 Indication Time Setting 35
9. Specifications 36
10. Troubleshooting 41
10.1 Indication 41
10.2 Key Operation 41
10.3 Operation 41
11. Character Table 42

1. Model

1.1 Model

SGU

SGUW

SGUL

*1: Input

Code	Input Type	Input Range	Code	Input Type	Input Range
K0	K thermocouple	$\begin{array}{\|c\|} \hline-200 \text { to } 1370^{\circ} \mathrm{C} \\ \left(-328 \text { to } 2498{ }^{\circ} \mathrm{F}\right) \\ \hline \end{array}$	A0	Direct current	4 to 20 mA (Built-in 50Ω shunt resistor)
K1		$\begin{array}{\|} \hline-200 \text { to } 200^{\circ} \mathrm{C} \\ \left(-328 \text { to } 392^{\circ} \mathrm{F}\right) \\ \hline \end{array}$	A1		4 to 20 mA $(250 \Omega$ shunt resistor)
K2		$\begin{array}{r} 0 \text { to } 400^{\circ} \mathrm{C} \\ \left(32 \text { to } 752^{\circ} \mathrm{F}\right) \\ \hline \end{array}$	A2		$\begin{array}{r} 4 \text { to } 20 \mathrm{~mA} \\ (50 \Omega \text { shunt resistor }) \end{array}$
J0	thermocouple	$\begin{array}{r} -200 \text { to } 1000^{\circ} \mathrm{C} \\ \left(-328 \text { to } 1832^{\circ} \mathrm{F}\right) \\ \hline \end{array}$	A3		0 to 20 mA (250 Ω shunt resistor)
J1		$\begin{array}{r} -200 \text { to } 200^{\circ} \mathrm{C} \\ \left(-328 \text { to } 392^{\circ} \mathrm{F}\right) \\ \hline \end{array}$	A4		0 to 16 mA (62.5Ω shunt resistor)
J2		$\begin{array}{r} 0 \text { to } 400^{\circ} \mathrm{C} \\ \left(32 \text { to } 752^{\circ} \mathrm{F}\right) \\ \hline \end{array}$	A5		2 to 10 mA (250Ω shunt resistor)
R	R thermocouple	$\begin{array}{r} -50 \text { to } 1760^{\circ} \mathrm{C} \\ \left(-58 \text { to } 3200^{\circ} \mathrm{F}\right) \\ \hline \end{array}$	A6		0 to 10 mA $(100 \Omega$ shunt resistor)
S	thermocouple	$\begin{array}{r} -50 \text { to } 1760^{\circ} \mathrm{C} \\ \left(-58 \text { to } 3200^{\circ} \mathrm{F}\right) \end{array}$	A7		$\begin{array}{r} 1 \text { to } 5 \mathrm{~mA} \\ (100 \Omega \text { shunt resistor) } \end{array}$
B	B thermocouple	$\begin{array}{r} 0 \text { to } 1820{ }^{\circ} \mathrm{C} \\ \left(32 \text { to } 3308{ }^{\circ} \mathrm{F}\right) \\ \hline \end{array}$	A8		0 to 1 mA (1000Ω shunt resistor)
E	E thermocouple	$\begin{array}{r} -200 \text { to } 800^{\circ} \mathrm{C} \\ \left(-328 \text { to } 1472^{\circ} \mathrm{F}\right) \\ \hline \end{array}$	A9		$\begin{array}{r} 10 \text { to } 50 \mathrm{~mA} \\ (10 \Omega \text { shunt resistor }) \\ \hline \end{array}$
T0	T thermocouple	$\begin{array}{\|} \hline-200 \text { to } 400^{\circ} \mathrm{C} \\ \left(-328 \text { to } 752^{\circ} \mathrm{F}\right) \\ \hline \end{array}$	V0	DC voltage	0 to 10 mV ($1 \mathrm{M} \Omega$ input resistance)
T1		$\begin{array}{\|} \hline-100 \text { to } 100^{\circ} \mathrm{C} \\ \left(-148 \text { to } 212^{\circ} \mathrm{F}\right) \end{array}$	V1		0 to 50 mV (1M2 input resistance)
N	N thermocouple	$\begin{gathered} -200 \text { to } 1300{ }^{\circ} \mathrm{C} \\ \left(-328 \text { to } 2372^{\circ} \mathrm{F}\right) \\ \hline \end{gathered}$	V2		0 to 60 mV $(1 \mathrm{M} \Omega$ input resistance)
PL	$\begin{gathered} \text { PL-II } \\ \text { thermocouple } \\ \hline \end{gathered}$	$\begin{array}{r} 0 \text { to } 1390^{\circ} \mathrm{C} \\ \left(32 \text { to } 2534^{\circ} \mathrm{F}\right) \end{array}$	V3		0 to 100 mV $(1 \mathrm{M} \Omega$ input resistance)
W5	W5Re/W26Re thermocouple	$\begin{array}{r} 0 \text { to } 2315^{\circ} \mathrm{C} \\ \left(32 \text { to } 4199^{\circ} \mathrm{F}\right) \\ \hline \end{array}$	V4		0 to 1 V (1MQ input resistance)
W3	W3Re/W25Re thermocouple	$\begin{array}{r} 0 \text { to } 2315^{\circ} \mathrm{C} \\ \left(32 \text { to } 4199^{\circ} \mathrm{F}\right) \\ \hline \end{array}$	V5		0 to 5 V (1M M input resistance)
P0	$\begin{gathered} \text { Pt100 } \\ \text { RTD } \end{gathered}$	$\begin{array}{r} -200 \text { to } 650^{\circ} \mathrm{C} \\ \left(-328 \text { to } 1202^{\circ} \mathrm{F}\right) \end{array}$	V6		1 to 5 V $(1 \mathrm{M} \Omega$ input resistance)
P1		$\begin{array}{\|c\|} \hline-100 \text { to } 100^{\circ} \mathrm{C} \\ \left(-148 \text { to } 212^{\circ} \mathrm{F}\right) \\ \hline \end{array}$	V7		-5 to 5 V $(1 \mathrm{M} \Omega$ input resistance)
P2	$\begin{gathered} \text { JPt100 } \\ \text { RTD } \end{gathered}$	$\begin{array}{r} -200 \text { to } 500{ }^{\circ} \mathrm{C} \\ \left(-328 \text { to } 932{ }^{\circ} \mathrm{F}\right) \\ \hline \end{array}$	V8		0 to 10 V (1M Ω input resistance)
P3		$\begin{aligned} & -100 \text { to } 100{ }^{\circ} \mathrm{C} \\ & \left(-148 \text { to } 212^{\circ} \mathrm{F}\right) \end{aligned}$	V9		-10 to 10 V $(1 \mathrm{M} \Omega$ input resistance)

*2: Output, Output 1, Output 2

Code	Output Type	Output Range	Code	Output Type	Output Range
1	Current output	4 to 20 mA	A	Voltage output	0 to 10 mV
2		0 to 20 mA	B		0 to 100 mV
3		0 to 16 mA	C		0 to 1 V
4		2 to 10 mA	D		0 to 5 V
5		0 to 10 mA	E		1 to 5 V
			F		0 to 10 V
			G		-5 to $5 \mathrm{~V}^{*}$

* Not available for SGUW.

1.2 How to Read the Model Label

The model label is attached to the left side of the case.

(Fig. 1.2-1)

2. Name and Functions

2.1 Front Panel

(Fig. 2.1-1)

(1)	Display section	Indicates setting contents, input value, output value, etc.
(2)	Mounting screw	Used for fixing the instrument to the socket or removal from it.
(3)	DISP key	Switches the displays, and moves to the next setting item. In Manual mode, Output 1 and Output 2 setting can be switched. Releases the lock status of the DISP key by pressing for 3 seconds.
(4)	MODE key	Selects either setting mode or display mode. Shifts the digit for the Custom display. Enters setting mode by pressing and holding for 5 seconds.
(5)	UP key	Increases the numerical value. Contents of Multi-Display A and B can be switched alternately when Default Display is RUN display mode 1, 2*, 3, 4*, 5 and 6*.
(6)	DOWN key	Decreases the numerical value. Enters Manual mode by pressing for 3 seconds.
(7)	Output 1 Zero	Adjusts the value of Output 1 Zero.
8)	Output 1 Span	Adjusts the value of Output 1 Span.
(9)	Output 2 Zero*	Adjusts the value of Output 2 Zero.
(10)	Output 2 Span*	Adjusts the value of Output 2 Span.

[^0]
2.2 Display Section

SGU, SGUL

SGUW

(Fig. 2.2-1)

(1)	Setting display indicator A	Lights up in Manual mode.
(2)	Input indicator A	Lights up when Multi-Display A indicates an input value.
(3)	Alarm indicator A	Lights up if an input error, input burnout or input disconnection occurs while Multi-Display A indicates an input value. Lights up if an input error, input burnout or input disconnection occurs for the following mode: Custom display mode 1, 2, 3, 4, Unlit display mode, Model display mode
(4)	Output indicator A	Lights up when Multi-Display A indicates an output value.
(5)	mA indicator	Lights up when mA is selected in [Indication unit].
(6)	\% indicator	Lights up in Manual mode, or when \% is selected in [Indication unit].
(7)	Setting display indicator B	Lights up for the Setting display. For the SGUW, lights up for the setting display or in Manual mode.
(8)	Input indicator B	Lights up when Multi-Display B indicates an input value.
(9)	Alarm indicator B	Lights up if an input error, input burnout or input disconnection occurs while Multi-Display B indicates an input value.
(10)	Output indicator B	Lights up when Multi-Display B indicates an output value.
(11)	1 indicator A	Lights up in Manual mode, or when Multi-Display A indicates Output 1 value.
(12)	2 indicator A	Lights up when Multi-Display A indicates Output 2 value.
(13)	Multi-Display A	Indicates the following in accordance with the display indication: Input value, output value, custom characters, setting item
(14)	V indicator	Lights up when V is selected in [Indication unit].
(15)	${ }^{\circ} \mathrm{C}$ indicator	Lights up when ${ }^{\circ} \mathrm{C}$ is selected in [Indication unit].
(16)	1 indicator B	Lights up when Multi-Display B indicates Output 1 value.
	2 indicator B	Lights up when Multi-Display B indicates Output 2 value.

| (18) | Multi-Display B |
| :--- | :--- | | Indicates the following in accordance with the display indication: |
| :--- |
| Input value, output value, custom characters, setting value |

Output indicators A and B, Alarm indicators A and B: Red Other indicators: White

3. Mounting

3.1 External Dimensions (Scale: mm)

8P socket (SGU, SGUL)
11P socket (SGUW)

(Fig. 3.1-1)

Caution

- Mount the DIN rail horizontally.
- To remove the socket, a flat blade screwdriver is required.

Never turn the screwdriver when inserting it into the Lock lever. If excessive power is applied to the lever, it may break.

- If the instrument is mounted in a position susceptible to vibration or shock, mount commercially available fastening plates at both ends of the instrument.

Recommended Fastening Plate

Manufacturer		Model	
Omron Corporation	End plate	PFP-M	
IDEC Corporation	Fastening plate	BNL6	
Panasonic Electric Works Co., Ltd.	Fastening plate	ATA4806	

Mounting to the DIN rail (Fig. 3.2-1)

(1) Separate the instrument from the socket by loosening the mounting screw on the front panel.
(2) Make sure the lock lever of the socket is located in the lower part of the socket. Hook the upper side of the socket onto the DIN rail, then fit the lower part of the socket onto the DIN rail (A clicking sound should be heard when done properly).

Caution

- Before inserting the instrument to the socket, make sure the cable is wired properly.
(Refer to "4. Wiring".)
- When inserting or removing the socket, make sure the socket is oriented vertically. If force is applied in any other direction than vertically, a malfunction may occur.
- If the mounting screw is fastened too tightly, a malfunction may occur.
(3) Insert the SGU into the socket.
(4) Fasten the mounting screw by turning it clockwise, to secure the SGU onto the socket. Tighten the screw lightly.

Removal from the DIN rail (Fig. 3.2-2)

(1) Turn the power to the instrument OFF.
(2) Separate the instrument from the socket by loosening the mounting screw on the front panel.
(3) Insert a flat blade screwdriver into the Lock lever (lower part of the socket), and remove the socket from the DIN rail while pulling the lever down.

(Fig. 3.2-1)

(Fig. 3.2-2)

4. Wiring

Warning

Turn the power supply to the instrument off before wiring or checking. Working on or touching the terminal with the power switched on may result in severe injury or death due to electrical shock.

4.1 Lead Wire Solderless Terminal

Use a solderless terminal with an insulation sleeve in which an M3 screw fits as shown below. The torque should be $0.63 \mathrm{~N} \cdot \mathrm{~m}$.

Solderless Terminal	Manufacturer	Model
Y-type	Nichifu Terminal Industries Co., Ltd.	TMEV1.25Y-3
	Japan Solderless Terminal MFG Co., Ltd.	VD1.25-B3A
Ring-type	Nichifu Terminal Industries Co., Ltd.	TMEV1.25-3
	Japan Solderless Terminal MFG Co., Ltd.	V1.25-3

4.2 Circuit Configuration

SGU, SGUL

(Fig. 4.2-1)

SGUW

(Fig. 4.2-2)

4.3 Terminal Arrangement

SGU

(8)

(Fig. 4.3-1)

SGUW

(9) B $_{-1}^{8}$ OUT1

SGUL

(Fig. 4.3-3)

PWR	Power supply 100 to 240 V AC or $24 \mathrm{~V} \mathrm{AC/DC} \mathrm{(for} \mathrm{SGU)}$
OUT (OUT1)	Output or Output 1 (for SGUW)
OUT2	Output 2 (for SGUW)
TC	Thermocouple input
RTD	RTD input
A	Direct current input
V	DC voltage input
CJA	Cold junction compensator input
RS-485	Serial communication (for SGUL)

\triangle Warning

- For 100 to 240 V AC, if the AC power source is connected to incorrect terminals, the instrument will be burnt out.

(1) Power Source Wiring

SGU: Use terminals (13), (14) for the power supply to the instrument. For 24 V DC, use terminals (13)(+), (14)(-) for the power supply to the instrument.
SGUL: Use terminals (13), (14) for the power supply to the instrument.
SGUW: Use terminals (10, (11) for the power supply to the instrument.

(2) Output Wiring

SGU, SGUL: Use terminals (9)(+), (12)(-) for the output wiring.
SGUW: Output 1: Use terminals (7)(+), 8(-) for Output 1 wiring.
Output 2: Use terminals (3)(+), (6)(-) for Output 2 wiring.

(3) Input Wiring

SGU, SGUL: Use terminals (1), (4), (5) for Input wiring.
For thermocouple input, connect the CJA (Cold junction compensator) between terminals (4) and (5).

For direct current input except A0 input code, use terminals (1), (4) for input wiring and shunt resistor connection.

SGUW: Use terminals (1), (2), (4) for Input wiring.
For thermocouple input, connect the CJA (Cold junction compensator) between terminals (2) and (4).

For direct current input except A0 input code, use terminals (1), (2) for input wiring and shunt resistor connection.
(4) Communication Wiring

For the SGUL, connect the SGUL to SGUL using the provided cable.

(Fig. 4.4-1)

5. Display Mode

- -------- Available only for the SGUW.

Default Display:

If the MODE and DISP key (in that order) are pressed together for approx. 3 seconds in any display mode, the display mode will become the Default Display.
Once the Default Display is set, the DISP key will be in lock status.
If the DISP key is pressed for approx. 3 seconds on the Default Display, the key lock status will be cancelled.
If the DISP key is pressed while the DISP key is in lock status, Multi-Display A indicates UE 苗

RUN display mode 1:	Multi-Display A indicates the input value, and Multi-Display B indicates Output 1 value.
RUN display mode 2:	Multi-Display A indicates the input value, and Multi-Display B indicates Output 2 value.
RUN display mode 3:	Multi-Display A indicates the input value, and Multi-Display B is unlit.
RUN display mode 4:	Multi-Display A indicates Output 1 value, and Multi-Display B indicates Output 2 value.
RUN display mode 5:	Multi-Display A is unlit, and Multi-Display B indicates Output 1 value.
RUN display mode 6:	Multi-Display A is unlit, and Multi-Display B indicates Output 2 value.
Custom display mode 1:	Multi-Display A indicates characters set in [Multi-Display A]. Multi-Display B indicates characters set in [Multi-Display B].
Custom display mode 2:	Multi-Display A indicates the input value, and Multi-Display B indicates characters set in [Multi-Display B].
Custom display mode 3:Multi-Display A indicates Output 1 value, and Multi-Display B indicates characters set in [Multi-Display B].	
Custom display mode 4:Multi-Display A indicates Output 2 value, and Multi-Display B indicates characters set in [Multi-Display B].	
Unlit display mode:	Multi-Display A and B are unlit, and the Input indicator A lights up.
All unlit display mode:	Alarm indicator A lights up if it is under the conditions of lighting. All displays and indicators are unlit. Alarm indicator A and B do not light up even if they are under the conditions of lighting.
Model display mode:	Multi-Display A indicates a model name, and Multi-Display B indicates an input code and output code.

6. Setting Mode

6.1 Display Transition in Setting Mode

- ------- Available only for the SGUW.
- r.---. j Available only for the SGUL.
- If the MODE key is pressed and held down for approx. 5 seconds in each setting mode, the unit will move to the Default Display.

6．2 Input Setting Mode

Input Group

Selects an input group．

Setting Range	Indication		Factory Default
	Multi－Display A	Multi－Display B	
DC input	SENS	回國局	DC input 50N5昰
Thermocouple input		EE㘣	
RTD input		距畨	

Input Type

Selects an input type．

Setting Range	Indication		Factory Default
	Multi－Display A	Multi－Display B	
K $\quad-200$ to $1370^{\circ} \mathrm{C}$	EE風圆	咎風成	
K \quad－ 200 to $200^{\circ}{ }^{* * 1, * 2}$		骨咸达	
K 0 to $400{ }^{\circ} \mathrm{C}^{*}$		咎風脤	
J－200 to $1000{ }^{\circ} \mathrm{C}$			
J－200 to $200^{\circ} \mathrm{C}{ }^{*}$ ，＊2		可風达	
$\mathrm{J} \quad 0$ to $400^{\circ} \mathrm{C}{ }^{+1}$			
$\mathrm{R} \quad-50$ to $1760^{\circ} \mathrm{C}$		吅風	
S $\quad-50$ to $1760^{\circ} \mathrm{C}$		5風風	
B $\quad 0$ to $1820^{\circ} \mathrm{C}$		日風成	
E $\quad-200$ to $800^{\circ} \mathrm{C}$		E成成	
T $\quad-200$ to $400^{\circ} \mathrm{C}$		E成區	
T $\quad-100$ to $100^{\circ} \mathrm{C}^{*} 1$		E風	
N $\quad-200$ to $1300{ }^{\circ} \mathrm{C}$			
PL－II $\quad 0$ to $1300{ }^{\circ} \mathrm{C}$		REEE	
W5Re／W26Re 0 to $2315^{\circ} \mathrm{C}$		枵風	
W3Re／W25Re 0 to $2315^{\circ} \mathrm{C}$		呵咸	
Pt100－200 to $650^{\circ} \mathrm{C}$	吅网	PE成	$\begin{aligned} & \mathrm{Pt100} \\ & \text { RE颳 } \\ & \text { RERE } \end{aligned}$
Pt100－ 100 to $100{ }^{\circ} \mathrm{C}^{*}$		RE風	
JPt100－200 to $500{ }^{\circ} \mathrm{C}$		FREE	
JPt100－100 to $100^{\circ} \mathrm{C}^{*} 1$		吅風	
4 to 20 mA Built－in 50Ω shunt resistor	日或風	艮践	4 to 20 mA Built－in 50Ω shunt resistor回圆風圆図㘣
4 to 20 mA Externally mounted 250Ω shunt resistor		哏圆	
4 to 20 mA Externally mounted 50Ω shunt resistor		艮熰	
0 to 20 mA		－	

Setting Range	Indication		Factory Default
	Multi－Display A	Multi－Display B	
0 to 16 mA	回圆圆		4 to 20 mA （Built－in 50Ω shunt resistor）国膡员圆㘣
2 to 10 mA		國圆回	
0 to 10 mA		回圆回	
1 to 5 mA		葍囫回	
0 to 1 mA		回圆圆	
10 to 50 mA		圆可辰	
0 to 10 mV		吅可可	
0 to 50 mV		吅吅河	
0 to 60 mV			
0 to 100 mV		吅可园	
0 to 1 V		匈岡國	
0 to 5 V		匈可吕	
1 to 5 V		葍可㽞	
－5 to 5 V		可可易	
0 to 10 V		風回可	
－10 to 10 V			

＊1：＇No decimal point＇and＇1 digit after decimal point＇can be selected in［Decimal point place］．
＊2：If＇1 digit after decimal point＇is selected in［Decimal point place］，the input low limit value is－199．9．

Input Unit

Selects an input temperature unit ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ ．

Setting Range	Indication		Factory Default
	Multi－Display A	Multi－Display B	
${ }^{\circ} \mathrm{C}$	EFW包	岡岡岡近	
${ }^{\circ} \mathrm{F}$		岡岡岡	

Decimal Point Place

For DC input，selects the decimal point place．
If the following input type is selected in［Input type］，＇No decimal point＇or＇1 digit after decimal point＇can be selected．

Output 0\% Value

Sets an input value (indicated on the display) at the time of output 0%.
Values change in accordance with the input unit.
Refer to (Table 6.2-1).

Setting Range	Indication		Factory Default
	Multi-Display A	Multi-Display B	
Low limit of each input type to Output 100\% value	SEWV	Set value	4.00

Output 100\% Value

Sets an input value (indicated on the display) at the time of output 100%.
Values change in accordance with the input unit.
Refer to (Table 6.2-1).

Setting Range	Indication		Factory Default
	Multi-Display A	Multi-Display B	
Output 0\% value to High limit of each input type	GE包	Set value	20.00

(Table 6.2-1)

Input Range	Output 0\% Value	Output 100\% Value
K*	-200	1370
	-200	200
	0	400
J*	-200	1000
	-200	200
	0	400
R*	-50	1760
S*	-50	1760
B*	0	1820
E*	-200	800
T*	-200	400
	-100	100
N*	-200	1300
PL-II*	0	1390
W5Re/W26Re*	0	2315
W3Re/W25Re*	0	2315
Pt100*	-200	650
Pt100*	-100	100
JPt100*	-200	500
JPt100*	-100	100
$\begin{array}{\|l} \hline 4 \text { to } 20 \mathrm{~mA} \\ \text { Built-in } 50 \Omega \text { shunt resistor } \\ \hline \end{array}$	4.00	20.00
4 to 20 mA Externally mounted 250Ω shunt resistor	4.00	20.00

Input Range	Output 0\％Value	Output $\mathbf{1 0 0 \%}$ Value
4 to 20 mA Externally mounted 50Ω shunt resistor	4.00	20.00
0 to 20 mA	0.00	20.00
0 to 16 mA	0.00	16.00
2 to 10 mA	2.00	10.00
0 to 10 mA	0.00	10.00
1 to 5 mA	1.00	5.00
0 to 1 mA	0.00	1.00
10 to 50 mA	10.00	50.00
0 to 10 mV	0.0	10.0
0 to 50 mV	0.0	50.0
0 to 60 mV	0.0	60.0
0 to 100 mV	0.0	100.0
0 to 1 V	0.00	1.00
0 to 5 V	0.00	5.00
1 to 5 V	1.00	5.00
-5 to 5 V	-5.0	5.0
0 to 10 V	0.00	10.00
-10 to 10 V	-10.0	10.0

＊If ${ }^{\circ} \mathrm{F}$ is selected in［Input unit］，input high limit and low limit will be those of ${ }^{\circ} \mathrm{F}$ range．

Indication Unit

Selects the unit for indication．

Setting Range	Indication		Factory Default
	Multi－Display A	Multi－Display B	
No unit		NWNE	
\％		PER层	
mA		M膡冨	
V		号可	
${ }^{\circ} \mathrm{C}$		EEES	

Save Settings

Selects whether the settings are saved（registered）or not．

Setting Range	Indication		Factory Default
	Multi－Display A	Multi－Display B	
Save	易里國	明可	$\begin{gathered} \text { Save } \\ \text { GDVE } \\ \text { BEG } \end{gathered}$
Not save		同図	

6．3 Output 1 Setting Mode

Output 1 Type
Selects Output 1 type．

Setting Range	Indication		Factory Default
	Multi－Display A	Multi－Display B	
4 to 20 mA	樶可	易驱回	
0 to 20 mA		吅呺	
0 to 16 mA		圆昞圆	
2 to 10 mA		匈圆员	
0 to 10 mA		圆氛圆	
0 to 10 mV			
0 to 100 mV		吅回圆	
0 to 1 V		圆畐國	
0 to 5 V		気可	
1 to 5 V		圆匈㽞	
0 to 10 V		圆匈蜀	
－5 to 5 V ＊		可里	

＊Not available for the SGUW．

Output 1 Decimal Point Place

Selects the decimal point place for Output 1.

Setting Range	Indication		Factory Default
	Multi－Display A	Multi－Display B	
No decimal point	回圆	党岡员	2 digits after decimal point因
1 digit after decimal point		家回回	
2 digits after decimal point		圆圆圆	
3 digits after decimal point			

Indication Value at Output 0\％

Sets an indication value at the time of output 0\％．See（Table 6．3－1）on p．24．

Setting Range	Indication		Factory Default
	Multi－Display A	Multi－Display B	
－1999 to 9999		Set value	

Indication Value at Output 100\％

Sets an indication value at the time of output 100\％．See（Table 6．3－1）on p．24．

Setting Range	Indication		Factory Default
	Multi－Display A	Multi－Display B	
－1999 to 9999	明可	Set value	

（Table 6．3－1）

Output Range	Indication Value at Output 0\％	Indication Value at Output 100\％
4 to 20 mA	4.00	20.00
0 to 20 mA	0.00	20.00
0 to 16 mA	0.00	16.00
2 to 10 mA	2.00	10.00
0 to 10 mA	0.00	10.00
0 to 10 mV	0.0	10.0
0 to 100 mV	0.0	100.0
0 to 1 V	0.00	1.00
0 to 5 V	0.00	5.00
1 to 5 V	1.00	5.00
0 to 10 V	0.00	10.00
-5 to 5 V	-5.0	5.0

Output 1 Low Limit

Sets Output 1 low limit value．

Setting Range	Indication		Factory Default
	Multi－Display A	Multi－Display B	
－10．0 to Output 1 high limit	㫬匈圆	Set value	

Output 1 High Limit

Sets Output 1 high limit value．

Setting Range	Indication		Factory Default
	Multi－Display A	Multi－Display B	
Output 1 low limit to 110.0	曋回圆	Set value	

Output 1 Normal／Reverse

Selects either Normal mode or Reverse mode for Output 1 status．

Setting Range	Indication		Factory Default
	Multi－Display A	Multi－Display B	
Normal	明圆氮	可可园	Normal
Reverse		RERS	言河

Save Settings

Selects whether the settings are saved（registered）or not．

Setting Range	Indication		Factory Default
	Multi－Display A	Multi－Display B	
Save	明國区	匂可岛	Save明WED
Not save		國図圆	

6．4 Output 2 Setting Mode

Available only for the SGUW．
Output 2 Type
Selects an output type．

Setting Range	Indication		Factory Default
	Multi－Display A	Multi－Display B	
4 to 20 mA	樶可		
0 to 20 mA		國回回	
0 to 16 mA		园圆	
2 to 10 mA		匈回回	
0 to 10 mA		圆風圆	
0 to 10 mV		國可回	
0 to 100 mV			
0 to 1 V		圆岡圆	
0 to 5 V			
1 to 5 V		匈可号	
0 to 10 V		匈匈可	

Output 2 Decimal Point Place

Selects the decimal point place for Output 2.

Setting Range	Indication		Factory Default
	Multi－Display A	Multi－Display B	
No decimal point	回國	圆圆	2 digits after decimal point
1 digit after decimal point		岡圆	
2 digits after decimal point			
3 digits after decimal point		嘓國	

Indication Value at Output 0\％

Sets an indication value at the time of output 0\％．See（Table 6．4－1）on p．26．

Setting Range	Indication		Factory Default
	Multi－Display A	Multi－Display B	
－1999 to 9999	旳为可	Set value	$\begin{gathered} 4.00 \\ 5 B \square \\ \text { Br } \end{gathered}$

Indication Value at Output 100\％

Sets an indication value at the time of output 100\％．See（Table 6．4－1）on p．26．

Setting Range	Indication		Factory Default
	Multi－Display A	Multi－Display B	
－1999 to 9999	854	Set value	

（Table 6．4－1）

Output Range	Indication Value at Output 0\％	Indication Value at Output 100\％
4 to 20 mA	4.00	20.00
0 to 20 mA	0.00	20.00
0 to 16 mA	0.00	16.00
2 to 10 mA	2.00	10.00
0 to 10 mA	0.00	10.00
0 to 10 mV	0.0	10.0
0 to 100 mV	0.0	100.0
0 to 1 V	0.00	1.00
0 to 5 V	0.00	5.00
1 to 5 V	1.00	5.00
0 to 10 V	0.00	10.00

Output 2 Low Limit

Sets Output 2 low limit value．

Setting Range	Indication		Factory Default
	Multi－Display A	Multi－Display B	
－10．0 to Output 2 high limit		Set value	

Output 2 High Limit

Sets Output 2 high limit value．

Setting Range	Indication		Factory Default
	Multi－Display A	Multi－Display B	
Output 2 low limit to 110.0	匈國	Set value	$\begin{aligned} & 110.0 \% \\ & \text { 明 } \\ & \text { 雷品 } \end{aligned}$

Output 2 Normal／Reverse

Selects either Normal mode or Reverse mode for Output 2 status．

Setting Range	Indication		Factory Default
	Multi－Display A	Multi－Display B	
Normal	日		Normal
Reverse		RERS	

Save Settings

Selects whether the settings are saved（registered）or not．

Setting Range	Indication		Factory Default
	Multi－Display A	Multi－Display B	
Save	囫國区	旬可禺	$\begin{gathered} \text { Save } \\ \text { SRDE } \\ \text { BEG } \end{gathered}$
Not save		國圆娄	

6．5 Instrument Setting Mode

Filter Time Constant

Sets the input filter time constant． Input fluctuation due to noise can be decreased．

Setting Range	Indication		Factory Default
	Multi－Display A	Multi－Display B	
0.0 to 10.0 seconds	F國國	Set value	

Sensor Correction

Sets sensor correction value．
Input value＝Current input value＋（Sensor correction value）

Setting Range	Indication		Factory Default
	Multi－Display A	Multi－Display B	
－1000 to 1000＊		Set value	

＊The placement of the decimal point follows the selection．

Input Burnout Status

Selects either overscale or underscale when input is burnt out．
Not available if direct current or DC voltage input is selected in［Input type］．

Setting Range	Indication		Factory Default
	Multi－Display A	Multi－Display B	
Overscale	呺因気	服可圆	Overscale昭因界圆圆
Underscale		日可匈	

Indication Time

Sets duration from no operation until indication（of Multi－Display A，Multi－Display B， and each action indicator）turns off．
They remain lit during setting mode，or in the event of an input error，input burnout or input disconnection．
When set to 00．00，they remain lit．
After indication time has elapsed，if any key is pressed while they are unlit，they will light up again．

Setting Range	Indication		Factory Default
	Multi－Display A	Multi－Display B	
00 ： 00 to 60 ： 00 （Minutes ：Seconds） 00 ： 00 ．．．．．．．．．．．．．．．．Continuous $00: 01$ to $60: 00$ ．．．．Indication time	ERNE	Set value	$30: 00$ （Minutes： Seconds） ERME

Auto／Manual

If AUTO is selected，the output value will be output corresponding to the input value． When MANUAL is selected，the unit can enter Manual mode．The output value set in Manual mode will be output．

Setting Range	Indication		Factory Default
	Multi－Display A	Multi－Display B	
Auto	M成里		Manual
Manual		M風圆	M ${ }^{\text {Na }}$

Manual Mode Auto Return Time

Sets duration from manual mode until the unit automatically returns to Default Display． If set to 0 （zero），auto return will not occur．

Setting Range	Indication		Factory Default
	Multi－Display A	Multi－Display B	
0 to 60 minutes	M区	Set value	30 minutes M明苗圆

Save Settings

Selects whether the settings are saved（registered）or not．

Setting Range	Indication		Factory Default
	Multi－Display A	Multi－Display B	
Save	5易易	易可禹	
Not save			

6．6 Communication Setting Mode

Available only for the communication specifications．

Instrument Number

Sets the instrument number．

Setting Range	Indication		Factory Default
	Multi－Display A	Multi－Display B	
1 to 247	CMND	Set value	

Communication Speed

Selects the communication speed．

Setting Range	Indication		Factory Default
	Multi－Display A	Multi－Display B	
9600 bps	EMER	風咸砳	
19200 bps		風成已	
38400 bps		明明	

Data bit／Parity

Selects data bit and parity．

Setting Range	Indication		Factory Default
	Multi－Display A	Multi－Display B	
8 bits／No parity	EMEE	昭気	8 bits／Odd EMFE曋昭
8 bits／Even		EEVN	
8 bits／Odd		日昭口	

Stop Bit

Selects stop bit．

Setting Range	Indication		Factory Default
	Multi－Display A	Multi－Display B	
1 bit	CMEE	風風圆	
2 bits		岡岡岡已	

Response Delay Time

Response from the instrument can be delayed after receiving command from the host computer．

Setting Range	Indication		Factory Default
	Multi－Display A	Multi－Display B	
0 to 1000 ms	区M岛	Set value	10 ms WM茴

Save Settings

Selects whether the settings are saved（registered）or not．

Setting Range	Indication		Factory Default
	Multi－Display A	Multi－Display B	
Save		因可易	$\begin{gathered} \text { Save } \\ \text { 明 } \\ \text { BED } \end{gathered}$
Not save		思园圆	

6．7 Custom Display Setting Mode

Customizes characters to be indicated on the Multi－Display A and B＊．
Use alphanumeric characters and symbols．
（e．g．）FLOW，TEMP，No．1，No． 2
＊Number of characters which can be indicated differs depending on the display mode．
Refer to Section ‘5．Display Mode’（pp．16，17）．
－If Custom display mode 1 is selected：
Up to 8 characters can be displayed in total for both Multi－Display A and B．
－If any of Custom display mode 2 to 4 is selected：
Up to 4 characters can be displayed on the Multi－Display B．
Can be set from the thousands digit of the display．
Digits can be selected with the MODE key．

Multi－Display A

Characters for the Multi－Display A can be customized．

Setting Range	Indication		Factory Default
	Multi－Display A	Multi－Display B	
A to Z， 0 to 9，／，－，．，（Blank）	甼成回	Set value	AAAA 明呙 日回

Multi－Display B

Characters for the Multi－Display B can be customized．

Setting Range	Indication		Factory Default
	Multi－Display A	Multi－Display B	
A to Z， 0 to 9，／，－，．，（Blank）	匈吅易	Set value	$\begin{aligned} & \text { AAAA } \\ & \text { 明明 } \\ & \text { 吅品 } \end{aligned}$

Save Settings

Selects whether the settings are saved（registered）or not．

Setting Range	Indication		Factory Default
	Multi－Display A	Multi－Display B	
Save	5RVE	SES ${ }^{\text {a }}$	$\begin{aligned} & \text { Save } \\ & \text { G月VE } \\ & \text { GES } \end{aligned}$
Not save		N可㖘	

6．8 Manual Mode

If MANUAL is selected in［Auto／Manual］in Instrument setting mode，press the DOWN key for 3 seconds on the Default Display．Then the unit will enter Manual mode．
At this time，Multi－Display A indicates Output 1 value，and Multi－Display B indicates Output 2 value．
The output value can be set by the UP or DOWN key．The output value is lit while setting． Pressing the DISP key switches the output to be set．The output to be set flashes．
By pressing the MODE key in Manual mode，or after Manual mode auto return time has elapsed，the unit returns to the Default Display，and outputs the value corresponding to the input value．

7. Adjustment

Performs the output zero and span adjustments.
For this instrument, the output adjustment has already been completed when shipped. If the instrument is used with the ordered Input/Output spec, the adjustment is not required. However, for calibration, or for the fine adjustment of the SGU to which any equipment is connected, perform the adjustment.

Connect an mV generator or Dial resistor to the input terminals of this instrument.
Connect a digital multimeter to the output terminals.

7.1 Basic Operation of Adjustment

For adjustment, use the following trimmers on the front panel.
Output 1 Zero: Adjusts the value of Output 1 Zero.
Output 1 Span: Adjusts the value of Output 1 Span.
Output 2 Zero: Adjusts the value of Output 2 Zero. (only for SGUW)
Output 2 Span: Adjusts the value of Output 2 Span. (only for SGUW)

7.2 Adjustment

All adjustment items are shown below.
Perform adjustment as follows.

7.2.1 Output 1 Adjustment

The following outlines the procedure for Output 1 adjustment.
(1) Enter the value corresponding to output 0%, and adjust the value using the 'Output 1 Zero' trimmer while viewing the output value (on the digital multimeter).
(2) Enter the value corresponding to output 100%, and adjust the value using the 'Output 1 Span' trimmer while viewing the output value (on the digital multimeter).
(3) Enter the value corresponding to output 0\% again, and confirm the output value (on the digital multimeter).
(4) If the value corresponding to output 0% is not at 0%, repeat steps (1) to (3) again.

7.2.2 Output 2 Adjustment

The procedure for Output 2 adjustment is the same as that of Output 1 adjustment. Use Output 2 Zero and Span trimmers for adjustment.

8．Operation

8．1 Indication after Power－on

After the power is turned on，the instrument is switched to warm－up status for 3 seconds．Multi－Display A indicates the model name，and Multi－Display B indicates the input code and output code．
（e．g．）SGU－A01－0－0
Multi－Display A：䟚票
Multi－Display B：吅圆
A value corresponding to input 0% will be output for Output 1 and Output 2.

8．2 Operation

After warm－up indication，the unit enters display mode．
The input signal selected in［Input type］will be converted to the output selected in ［Output 1 type］and［Output 2 type］．

8．2．1 Input Indication Range

The measured value is indicated within the following range：
［Output 0% value－（Output 100% value－Output 0% value）$\times 10 \%$ ］to
［Output 100\％value＋（Output 100\％value－Output 0\％value）$\times 10 \%$ ］
Thermocouple，RTD range：
［Input range low limit－（Input span）x 10\％］to
［Input range high limit＋（Input span）$\times 10 \%$ ］
However，if a range with a decimal point is selected：For a value lower than（and including）-200.0 ，the input value and the minus（－）sign will be indicated alternately．
For DC input：
For a value lower than（and including）－2000，the input value and the minus（－）sign will be indicated alternately．For a value higher than（and including）10000，the lower 4 digits of the input value will flash．（The placement of the decimal point follows the selection．）
If the measured value exceeds the indication range：团 will flash．
If the measured value drops below the indication range：圈圈 will flash．

8．2．2 Indication Range of Output 1，Output 2

The output value is indicated within the following range：
［Indication value at output 0\％－（Indication value at output 100\％－Indication value at output $0 \%) \times 10 \%$ ］to
［Indication value at output 100\％＋（Indication value at output 100\％－Indication value at output 0% ）$\times 10 \%$ ］
However，the high limit value is 9999，and the low limit value is -1999 ．（The placement of the decimal point follows the selection．）

8．2．3 Input Burnout Status

Overscale or underscale can be selected in the event of thermocouple or RTD input burnout．
If overscale is selected，the output is forcibly limited to 110% ．
If underscale is selected，the output is forcibly limited to 0% ．
When overscale is selected：If input is burnt out，the Alarm indicator will light up，and Ther will flash．
When underscale is selected：If input is burnt out，the Alarm indicator will light up，and 4her will flash．

For direct current or DC voltage input, if its input is disconnected, the input status will be as follows.

Input Range	Input Status
4 to 20 mA Built-in 50Ω shunt resistor	Equals 0 mA input.
4 to 20 mA Externally mounted 250Ω shunt resistor	Equals 0 mA input.
4 to 20 mA Externally mounted 50Ω shunt resistor	Overscale *
0 to 20 mA	Equals 0 mA input.
0 to 16 mA	Overscale *
2 to 10 mA	Equals 0 mA input.
0 to 10 mA	Overscale *
1 to 5 mA	Overscale *
0 to 1 mA	Overscale *
10 to 50 mA	Overscale *
0 to 10 mV	Overscale *
0 to 50 mV	Overscale * ${ }^{*}$
0 to 60 mV	Overscale *
0 to 100 mV	Overscale *
0 to 1 V	Equals 0 V input.
0 to 5 V	Equals 0 V input.
1 to 5 V	Equals 0 V input.
-5 to 5 V	Equals 0 V input.
0 to 10 V	Equals 0 V input.
-10 to 10 V	

* For the overscale status, the Alarm indicator will light up, and will flash.

8.2.4 Indication Time Setting

After preset indication time has elapsed, Multi-Display A, Multi-Display B and each action indicator are turned OFF.
They will light up again if any key is pressed.
They remain lit during setting mode, or in the event of an input error, input burnout or input disconnection.
If the indication time is set to 00:00, they will remain lit.

9. Specifications

Input Specifications

Thermocouple input	K, J, R, S, B, E, T, N, PL-II, W5Re/W26Re, W3Re/W25Re External resistance: 100Ω max. (However, thermocouple B: 40Ω max.) Input: ${ }^{*} 1:{ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ can be selected in [Input unit]. *2: 'No decimal point' and ' 1 digit after decimal point' can be selected. *3: If ' 1 digit after decimal point' is selected, the low limit value will be-199.9.		

RTD input	Pt100, JPt100 3-wire type Input detection curre Allowable lead wire Input: ${ }^{*} 1:{ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ can be *2: 'No decimal poin selected.	nt: Approx. 200 resistance: 200 Input Range *1 selected in [Input t' and ' 1 digit afte	A max. per wire unit]. decimal point'
Direct current input	Input Range 4 to 20 mA DC 0 to 20 mA DC 0 to 16 mA DC 2 to 10 mA DC 0 to 10 mA DC 1 to 5 mA DC 0 to 1 mA DC 10 to 50 mA DC * Built-in shunt resis	Shunt Resistor $50 \Omega^{*}$ $\|$$250 \Omega$ 	Indication Resolution 1
DC voltage input	Input Range 0 to 10 mV 0 to 50 mV 0 to 60 mV 0 to 100 mV 0 to 1 V 0 to 5 V 1 to 5 V -5 to 5 V 0 to 10 V -10 to 10 V	Input Resistance $1 \mathrm{M} \Omega$	Indication Resolution 1

Output 1 Specifications

Direct current	Output Range	Allowable Load Resistance	Zero Adjustment Range	Span Adjustment Range
	4 to 20 mA	750 ת max.	-5 to 5\%	95 to 105\%
	0 to $20 \mathrm{~mA}^{*}$	750Ω max.		
	0 to $16 \mathrm{~mA}^{*}$	900Ω max.		
	2 to 10 mA	1500Ω max.		
	0 to $10 \mathrm{~mA}^{*}$	1500Ω max.		
	* 0 mA or less: Out of base accuracy			
DC voltage				
	Output Range	Allowable Load Resistance	Zero Adjustment Range	Span Adjustment Range
	0 to $10 \mathrm{mV}^{* 1}$	$10 \mathrm{k} \Omega \mathrm{min}$.	-5 to 5\%	95 to 105\%
	0 to $100 \mathrm{mV}^{* 1}$	$100 \mathrm{k} \Omega \mathrm{min}$.		
	0 to $1 \mathrm{~V}^{* 1}$	1000 ת min.		
	0 to $5 \mathrm{~V}^{* 1}$	5000 ת min.		
	1 to 5 V	5000 ת min.		
	0 to $10 \mathrm{~V}^{* 1}$	$10 \mathrm{k} \Omega \mathrm{min}$.		
	-5 to $5 \mathrm{~V}^{*} 2$	$10 \mathrm{k} \Omega \mathrm{min}$.		
	*1: 0 V or less: Out of base accuracy *2: Not available for the SGUW.			

Output 2 Specifications

Direct current	Output Range	Allowable Load Resistance	\qquad	Span Adjustment Range
	4 to 20 mA	750Ω max.	-5 to 5\%	95 to 105\%
	0 to $20 \mathrm{~mA}^{*}$	750Ω max.		
	0 to $16 \mathrm{~mA}^{*}$	900Ω max.		
	2 to 10 mA	1500Ω max.		
	0 to $10 \mathrm{~mA}^{*}$	1500Ω max.		
	* 0 mA or less: Out of base accuracy			
DC voltage				
	Output Range	Allowable Load Resistance	Zero Adjustment Range	Span Adjustment Range
	0 to $10 \mathrm{mV}^{*}$	$10 \mathrm{k} \Omega \mathrm{min}$.	-5 to 5\%	95 to 105\%
	0 to $100 \mathrm{mV}{ }^{*}$	$100 \mathrm{k} \Omega \mathrm{min}$.		
	0 to $1 \mathrm{~V}^{*}$	1000 ת min.		
	0 to $5 \mathrm{~V}^{*}$	5000Ω min.		
	1 to 5 V	5000 ת min.		
	0 to $10 \mathrm{~V}^{*}$	$10 \mathrm{k} \Omega \mathrm{min}$.		
	* 0 V or less: Out of base accuracy			

Performance

Base accuracy (at $25^{\circ} \mathrm{C}$)	$\pm 0.1 \%$ of each input span Thermocouple input When input is $0^{\circ} \mathrm{C}$ or less: Base accuracy $+ \pm 0.1 \%$ of each input span When input has a decimal point: Base accuracy $+ \pm 0.05 \%$ of each input span R, S input, -50 to $200^{\circ} \mathrm{C}\left(-58\right.$ to $392^{\circ} \mathrm{F}$): $\pm 0.3 \%$ of each input span B input, 0 to $300^{\circ} \mathrm{C}\left(32\right.$ to $\left.572^{\circ} \mathrm{F}\right)$: Accuracy is not guaranteed.
Cold junction compensation accuracy	$\pm 0.5^{\circ} \mathrm{C}\left(1.0^{\circ} \mathrm{F}\right)$ at $20 \pm 10^{\circ} \mathrm{C}$
Temperature coefficient	$\begin{aligned} & \pm 0.015 \% /{ }^{\circ} \mathrm{C} \\ & 0 \text { to } 10 \mathrm{mV} \text { output: } 0.02 \% /{ }^{\circ} \mathrm{C} \end{aligned}$
Effect of allowable lead wire resistance	RTD input: Less than 20Ω per wire: Base accuracy 20Ω or more per wire: Base accuracy $+0.005 \% / \Omega$
Response time	$500 \mathrm{~ms} \mathrm{max}$. ($0 \rightarrow 90 \%$)
Indication update cycle	125 ms
Insulation resistance	$100 \mathrm{M} \Omega$ minimum, at 500 V DC
Dielectric strength	2.0 kV AC for 1 minute

General Structure

Dimensions	$22.5 \times 89 \times 70 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H} \times \mathrm{D})$
Weight	Approx. 78 g
Mounting	DIN rail
Case	Flame-resistant resin, Color: Black
Front panel	Polycarbonate

Installation Specifications

Power supply	100 to $240 \mathrm{~V} \mathrm{AC} \mathrm{50/60} \mathrm{~Hz}$ $24 \mathrm{~V} \mathrm{AC/DC} \mathrm{50/60} \mathrm{Hz}$,
Allowable voltage range	100 to 240 V AC: 85 to 264 V AC $24 \mathrm{~V} \mathrm{AC/DC:} 20$ to 28 V AC/DC
Power consumption	100 to 240 V AC: Approx. 9 VA max. (SGUL: Approx. 10 VA max.) $24 \mathrm{~V} \mathrm{AC:} \mathrm{Approx} .\mathrm{6} \mathrm{VA} \mathrm{max}$. 24 V DC: Approx. 3 W max.
Ambient temperature	-10 to $55^{\circ} \mathrm{C}$ (Non-condensing, no icing)
Ambient humidity	35 to 85% RH (Non-condensing)

Serial Communication (for SGUL)

Operation from an external computer	Reading and setting of various set values Reading of the input value and action status Function change。
Communication line	ElA RS-485
Communication method	Half-duplex communication
Communication speed	$9600,19200,38400$ bps (Selectable by keypad) (Factory default: 38400 bps)
Synchronization method	Start-stop synchronization
Communication protocol	Modbus RTU
Start bit	1 bit
Data bit	8 bits
Parity	Even/Odd/No parity (Selectable by keypad) (Factory default: Odd)
Stop bit	1 bit or 2 bits (Selectable by keypad) (Factory default: 1 bit)
Response delay time	Response from the instrument can be delayed after receiving command from the host computer. 0 to 1000 ms (Factory default: 10 ms)

Standard Function

Power failure countermeasure	The setting data is backed up in the non-volatile IC memory.
Self-diagnosis	The CPU is monitored by a watchdog timer, and if an abnormal status occurs, the instrument is switched to warm-up status, turning all outputs OFF.
Automatic cold junction temperature compensation	When thermocouple input is selected, this detects the temperature at the connecting terminal between the thermocouple and the instrument, and always maintains it at the same status as if the reference junction location temperature was at $0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$.
If the cold junction connected to terminals is burnt out, the Multi-	
Display A indicates E⿹EDE, and the Multi-Display B is turned OFF.	
At this time, the instrument status follows the selection in [Input	
burnout status].	
(Either overscale or underscale selected in [Input burnout status] will	
be indicated.)	

10. Troubleshooting

10.1 Indication

Problem	Possible Cause	Solution
Multi-Display A or B flashes \boldsymbol{F}° or yysur when it indicates an input value.	The sensor may be burnt out.	Replace with a new sensor.
	Check whether the sensor is securely mounted to the input terminals of this instrument.	Connect the sensor terminals to the instrument input terminals securely.
	Check the input signal source.	Ensure that the input signal source works normally.
	Check if polarity of thermocouple or compensating lead wire is correct. Check whether codes (A, B, B) of RTD agree with the instrument terminals.	Wire them correctly.
Multi-Display A or B is irregular or unstable when it indicates an input value.	Check whether sensor input or unit (${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$) is correct.	Select the same sensor type and unit (${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$) as those of currently used sensor.
	Sensor correction value is unsuitable.	Set it to a suitable value.
	AC leaks into the sensor circuit.	Use an ungrounded type sensor.
	There may be equipment that interferes with or makes noise near the instrument.	Keep the instrument clear of any potentially disruptive equipment.
Displays and indicators are unlit. If any key is pressed, they will light up.	The Indication Time (p.28) is set to any value other than 00 : 00 . (Factory default is 30 : 00.)	To indicate continuously, set the Indication Time (p.28) to "00: 00".

10.2 Key Operation

Problem	Possible Cause	Solution
If the DISP key is pressed,	The DISP key is in locked	Press the DISP key for approx.
Multi-Display A shows	status.	3 seconds to release the key
lock.		
possible to it is not		
display modes.		

10.3 Operation

$\left.$| Problem | Possible Cause | Solution |
| :--- | :--- | :--- |
| When Multi-Display A or B
 indicates an input value,
 the input value does not
 change. | The sensor may be out of order. | Replace with the new sensor.
 output cables are securely
 connected to the I/O
 terminals of the instrument. | | Ensure that input and output |
| :--- |
| cables are securely |
| connected to the I/O |
terminals of the instrument.	\right\rvert\,	Check whether input and

11．Character Table

Please use the following factory default values for your reference．

Display mode

Setting Item	Multi－Display A	Multi－Display B	Data
Default display mode	Follows currently indicated display mode．		
RUN display mode 1	Input value	Output 1 value	
RUN display mode 2＊	Input value	Output 2 value	
RUN display mode 3	Input value	Unlit	
RUN display mode 4＊	Output 1 value	Output 2 value	
RUN display mode 5	Unlit	Output 1 value	
RUN display mode 6＊	Unlit	Output 2 value	
Custom display mode 1	吅吅	吅吅	
Custom display mode 2	Input value	同因回	
Custom display mode 3	Output 1 value	吅圆	
Custom display mode 4＊	Output 2 value	吅回	
Unlit display mode	Unlit	Unlit	
All unlit display mode	Unlit	Unlit	
Model display mode	Model	Input，Output codes	

＊Available only for the SGUW．

Setting mode

Setting Item	Multi－Display A	Multi－Display B	Data
Input setting mode	國風局	Unlit	
Output 1 setting mode	㫬圆	Unlit	
Output 2 setting mode＊		Unlit	
Instrument setting mode	明园	Unlit	
Communication setting mode	EWMM	Unlit	
Custom display setting mode	E気	Unlit	

＊Available only for the SGUW．

Input setting mode

Setting Item		Multi－Display A	Multi－Display B
Data			
Input group	Input type＊	Thermocouple input	REN

[^1]Output 1 setting mode

Setting Item	Multi－Display A	Multi－Display B	Data
Output 1 type	昛可皃		
Output 1 decimal point place	明同	圆氛氛	
Indication value at output 0\％	明可䍖	员员员	
Indication value at output 100\％	明可	20．0］	
Output 1 low limit	日畨同	同同㐭	
Output 1 high limit	囫圆	葍圆员	
Output 1 Normal／Reverse	日回囷	NTME	
Save settings		樶可	

Output 2 setting mode

Setting Item	Multi－Display A	Multi－Display B	Data
Output 2 type	樶可	枸㺃	
Output 2 decimal point place	明同		
Indication value at output 0\％	BG7E	圆圆莒	
Indication value at output 100\％	750］		
Output 2 low limit	昒运	冎圆员	
Output 2 high limit	呵國	圆膡圆	
Output 2 Normal／Reverse	明匈	NWM	
Save settings	吅國	樶兩	

Instrument setting mode

Setting Item	Multi－Display A	Multi－Display B	Data
Filter time constant	F風	岡岡匀员	
Sensor correction	5065	园圆	
Input burnout status		吅風免	
Indication time	EVME	囫圆	
Auto／Manual	MR吅	M可可	
Manual mode auto return time	MEFE	硕团	
Save settings	SRTV	明可	

Communication setting mode（for SGUL）

Setting Item	Multi－Display A	Multi－Display B	Data
Instrument number	EMNZ		
Communication speed	EMGP	肉明	
Data bit／Parity	EMFE	明明	
Stop bit	EMGE	岡岡㖴	
Response delay time	EMGU	70	
Save settings	SAVE	明骩	

Custom display setting mode

Setting Item	Multi－Display A	Multi－Display B	Data
Multi－Display A	回因目	周同	
Multi－Display B	明吅	周同	
Save settings	回國	明可顶	

***** Inquiries *****
For any inquiries about this unit, please contact our agency or the vendor where you purchased the unit after checking the following.
[Example]

- Model

SGU-A01-0-0

- Serial number 154F05000

In addition to the above, please let us know the details of the malfunction, or discrepancy, and the operating conditions.

SHINKO TECHNOS CO., LTD.
 OVERSEAS DIVISION

Head Office: 2-5-1, Senbahigashi, Minoo, Osaka, Japan
URL: http://www.shinko-technos.co.jp/e/ Tel: +81-72-727-6100
E-mail: overseas@shinko-technos.co.jp
Fax: +81-72-727-7006

[^0]: * Only for the SGUW.

[^1]: ＊The input type differs depending on the selection in［Input group］．

