
Plug-in Type Digital Indicating Conductivity Meter WIL-102-ECH (High Concentration)

Instruction Manual

Preface

Thank you for purchasing our WIL-102-ECH (High Concentration), Plug-in Type Digital Indicating Conductivity Meter.

This manual contains instructions for the mounting, functions, operations and notes when operating the WIL-102-ECH. To ensure safe and correct use, thoroughly read and understand this manual before using this instrument. To prevent accidents arising from the misuse of this instrument, please ensure the operator receives this manual.

Indication	4	Ω	- 1	2	Э	Ч	5	5	7	8	9	Ľ	F
Number, °C/°F	-1	0	1	2	3	4	5	6	7	8	9	ç	°F
Indication	8	Ь	C	đ	Ε	F	5	Н	- 1	L'	F	L	ā
Alphabet	А	В	С	D	Е	F	G	Н	Ι	J	К	L	М
Indication	n	o	P	9	~	5	Γ	Ш	В	ū	U	Ч	111
Alphabet	Ν	0	Ρ	Q	R	S	Т	U	V	W	Х	Y	Ζ

Characters Used in This Manual

▲ Caution

- This instrument should be used in accordance with the specifications described in the manual. If it is not used according to the specifications, it may malfunction or cause a fire.
- Be sure to follow all of the warnings, cautions and notices. If they are not observed, serious injury or malfunction may occur.
- The contents of this instruction manual are subject to change without notice.
- Care has been taken to ensure that the contents of this instruction manual are correct, but if there are any doubts, mistakes or questions, please inform our sales department.
- This instrument is designed to be installed on a DIN rail in an indoor control panel. If it is not, measures must be taken to ensure that the operator cannot touch power terminals or other high voltage sections.
- Any unauthorized transfer or copying of this document, in part or in whole, is prohibited.
- Shinko Technos CO., LTD. is not liable for any damage or secondary damage(s) incurred as a result of using this product, including any indirect damage.

Safety Precautions (Be sure to read these precautions before using our products.)

The safety precautions are classified into 2 categories: "Warning" and "Caution". Depending on the circumstances, procedures indicated by \triangle Caution may result in serious consequences, so be sure to follow the directions for usage.

Procedures which may lead to dangerous conditions and cause death or serious injury, if not carried out properly.

Procedures which may lead to dangerous conditions and cause superficial to medium injury or physical damage or may degrade or damage the product, if not carried out properly.

Λ Warning

- To prevent an electrical shock or fire, only Shinko or other qualified service personnel may handle the inner assembly.
- To prevent an electrical shock, fire or damage to the instrument, parts replacement may only be undertaken by Shinko or other qualified service personnel.

SAFETY PRECAUTIONS

- To ensure safe and correct use, thoroughly read and understand this manual before using this instrument.
- This instrument is intended to be used for measuring equipment. Verify correct usage after purpose-of-use consultation with our agency or main office. (Never use this instrument for medical purposes with which human lives are involved.)
- External protection devices such as protective equipment against excessive temperature rise, etc. must be installed, as malfunction of this product could result in serious damage to the system or injury to personnel. Proper periodic maintenance is also required.
- This instrument must be used under the conditions and environment described in this manual. Shinko Technos Co., Ltd. does not accept liability for any injury, loss of life or damage occurring due to the instrument being used under conditions not otherwise stated in this manual.

Meaning of Warning Message on Model Label

1 Caution

If do not handle this instrument correctly, may suffer minor or moderate injury or property damage due to fire, malfunction, or electric shock. Please read this manual carefully and fully understand it before using it.

Caution with Respect to Export Trade Control Ordinance

To avoid this instrument from being used as a component in, or as being utilized in the manufacture of weapons of mass destruction (i.e. military applications, military equipment, etc.), please investigate the end users and the final use of this instrument. In the case of resale, ensure that this instrument is not illegally exported.

PRECAUTIONS

1. Installation Precautions

1 Caution

This instrument is intended to be used under the following environmental conditions (IEC61010-1): • Overvoltage category II, Pollution degree 2

Ensure the mounting location corresponds to the following conditions:

- · A minimum of dust, and an absence of corrosive gases
- No flammable, explosive gases
- No mechanical vibrations or shocks
- No exposure to direct sunlight, an ambient temperature of 0 to 50 $^\circ C$ (32 to 122 $^\circ F)$ that does not change rapidly, and no icing
- An ambient non-condensing humidity of 35 to 85 %RH
- No large capacity electromagnetic switches or cables through which large current is flowing
- No water, oil, chemicals or the vapors of these substances can come into direct contact with the unit
- If the WIL-102-ECH is installed within a control panel, the ambient temperature of the unit not the ambient temperature of the control panel must be kept under 50°C. Otherwise the life of electronic parts (especially electrolytic capacitors) of the unit will be shortened.

Note: Do not install this instrument on or near flammable material even though the case of this instrument is made of flame-resistant resin.

2. Wiring Precautions

Caution

- Do not leave wire remnants in the instrument, as they could cause a fire and/or a malfunction.
- Use a solderless terminal with an insulation sleeve in which the M3 screw fits when wiring the WIL-102-ECH.
- Tighten the terminal screw using the specified torque. If excessive force is applied to the screw when tightening, the terminal screw may be damaged.
- This instrument does not have a built-in power switch, circuit breaker and fuse. It is necessary to install a power switch, circuit breaker and fuse near the instrument. (Recommended fuse: Time-lag fuse, rated voltage 250 V AC, rated current 2 A)
- For a 24 V AC/DC power source, do not confuse polarity when using direct current (DC).
- Do not apply a commercial power source to the sensor which is connected to the input terminal nor allow the power source to come into contact with the sensor.
- Use the 4-electrode Conductivity Sensor in accordance with the sensor input specifications of the WIL-102-ECH.
- Keep the input wires and power lines separate.

Note about the 4-Electrode Conductivity Sensor Cable

- The 4-electrode Conductivity Sensor cable is a highly-insulated (electrical) cable. Please handle it with utmost care as follows.
- The 4-electrode Conductivity Sensor cable should be wired directly to the socket.
- Do not allow terminals and socket of the 4-electrode Conductivity Sensor cable to come in contact with moisture or oil of any kind. Likewise, ensure fingers are clean, otherwise the insulation will deteriorate, resulting in unstable indication.
- Be sure to keep the cable dry and clean at all times.
- If the cable is stained, clean it with alcohol, and dry it completely.
- For calibration or electrode checking/replacement, the 4-electrode Conductivity Sensor cable should be wired with sufficient length.
- Keep the 4-electrode Conductivity Sensor cable and junction cable away from electrical devices, such as motors or their power lines from which inductive interference emanates.

Connection

The 4-electrode Conductivity Sensor cable has the following terminals.

Code	Terminal
1	Conductivity sensor terminal 1
2	Conductivity sensor terminal 2
3	Conductivity sensor terminal 3
4	Conductivity sensor terminal 4
A, B (T, T)	Temperature compensation sensor terminals [Pt100 (2-wire), Pt1000] 5-6
A, B, B	Temperature compensation sensor terminals [Pt100 (3-wire)] 5-6-7
E	Shield wire terminal 8

For the electrode with no temperature compensation, A, B (T, T) or A, B, B cables are not available. E cables are available depending on the sensor type.

During operation, the Conductivity/Temperature Display may become abnormal or unstable due to inductive interference or noise. In this case, try [Grounding of shield wire terminal (E) (P.77)].

3. Operation and Maintenance Precautions

Caution

- Do not touch live terminals. This may cause an electrical shock or problems in operation.
- Turn the power supply to the instrument OFF when retightening the terminal or cleaning. Working on or touching the terminal with the power switched ON may result in severe injury or death due to electrical shock.
- Use a soft, dry cloth when cleaning the instrument.

(Alcohol based substances may tarnish or deface the unit.)

• As the display section is vulnerable, be careful not to put pressure on, scratch or strike it with a hard object.

4. Compliance with Safety Standards

1 Caution

- Always install the recommended fuse described in this manual externally.
- If the instrument is used in a manner not specified by the manufacturer, the protection provided by the instrument may be impaired.
- Use equipment that is reinforced-insulated or double-insulated from the primary power supply for external circuits connected to this instrument.

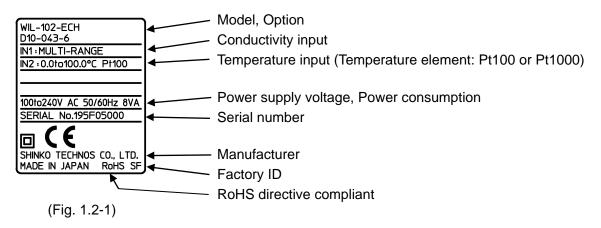
Contents

1. Model	7
1.1 Model	
1.2 How to Read the Model Label	
2. Names and Functions of Instrument	
3. Mounting to the Control Panel	
3.1 Site Selection	
3.2 External Dimensions (Scale: mm)	
3.3 Mounting	
4. Removal	
5. Wiring	
5.1 Lead Wire Solderless Terminal	
5.2 Terminal Arrangement	
5.3 Wire the Communication Line.	
6. Outline of Key Operation and Setting Groups	
6.1 Outline of Key Operation	
6.2 Setting Groups	
7. Key Operation Flowchart	
8. Setup	
8.1 Turn the Power Supply ON.	
8.2 Conductivity Input Group 8.3 Temperature Input Group	
8.4 Basic Function Group	
9. Calibration	
9.1 Conductivity Calibration Mode	
9.2 Temperature Calibration Mode	
9.3 Transmission Output 1 Adjustment Mode	
9.4 Transmission Output 2 Adjustment Mode	
10. Measurement	44
10.1 Starting Measurement	
10.2 A Output	
10.3 Conductivity Input Error Alarm	
10.4 Error Output 10.5 Fail Output	
10.6 Error Code during Measurement	
10.7 Transmission Output 1 and 2	
11. Communication	
11.1 System Configuration Example	
11.2 Setting Method of the Conductivity Meter	

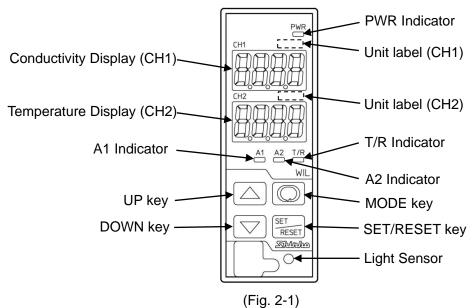
11.3 Communication Procedure	48
11.4 Shinko Protocol	49
11.4.1 Transmission Mode	49
11.4.2 Command Configuration	49
11.4.3 Checksum Calculation	50
11.5 MODBUS Protocol	51
11.5.1 Transmission Mode	
11.5.2 Data Communication Interval	51
11.5.3 Message Configuration	
11.5.4 Message Example	
11.6 Communication Command Table	
11.6.1 Notes about Setting/Reading Command	55
11.6.2 Setting/Reading Command	
11.6.3 Read Only Command	
11.7 Conductivity & Temperature Calibrations, Transmission Output 1 & 2 Adjustments	
via Communication Command	
11.7.1 Conductivity Calibration	
11.7.2 Temperature Calibration	
11.7.3 Transmission Output 1 Adjustment	
11.7.4 Transmission Output 2 Adjustment	
11.8 Notes on Programming Monitoring Software	
11.8.1 How to Speed up the Scan Time	
11.8.2 How to Read the Set Value Changes Made by Front Keypad Operation	
11.8.3 Note when Sending All Set Values Simultaneously	67
12. Specifications	68
12.1 Standard Specifications	68
12.2 Optional Specifications	73
13. Troubleshooting	77
13.1 Indication	77
13.2 Key Operation	78
13.3 Calibration	78
13.4 Communication	79
14. Temperature Compensation Method	80
14.1 Temperature Compensation Based on the Temperature Characteristics of NaCI	
14.2 How to Input Temperature Coefficient	
15. Character Tables	82

1. Model

1.1 Model


WIL-10	2	-EC	Н		,		
Input Points	2					2 points	
loout		EC				4-electrode Conductivity Sensor (Temperature element: Pt100) (*1)	
Input EC				4-electrode Conductivity Sensor (Temperature element: Pt1000) (*1)			
Concentration H				High concentration			
				100 to 240 V AC (standard)			
Power Supply Voltage 1		1		24 V AC/DC (*2)			
						EVT	A output (A11, A12, A21, A22)
Option		TA	Transmission output 1 (*3)				
				TA2	Transmission output 1, Transmission output 2		

(*1) This input temperature specification was specified at the time of ordering.


- (*2) Power supply voltage 100 to 240 V AC is standard.
- When ordering 24 V AC/DC, enter "1" in Power supply voltage after 'ECH'.
- (*3) If TA option is ordered, the EVT option (A1 output only) will be added.

1.2 How to Read the Model Label

The model label is attached to the left side of the case.

2. Names and Functions of Instrument

Displays

<u></u>	
Conductivity Display	Conductivity, or characters in setting mode are indicated in red.
(CH1)	Indications differ depending on the selections in [Display selection (p.34)].
Temperature Display	Temperature, or values in setting mode are indicated in red.
(CH2)	Indications differ depending on the selections in [Display selection (p.34)].

Unit label (CH1)	Attach the user's unit of Conductivity Display (CH1) from the included unit				
	labels if necessary.				
Unit label (CH2)	Attach the user's unit of Temperature Display (CH2) from the included unit labels if necessary.				

Action Indicators

PWR Indicator	When power supply to the instrument is turned ON, the yellow LED lights.	
A1 Indicator	When A1 output (Contact output 1) is ON, the red LED lights.	
	(Unlit if TA2 option is ordered.)	
A2 Indicator	When A2 output (Contact output 2) is ON, the yellow LED lights.	
	(Unlit if TA option or TA2 option is ordered.)	
T/R Indicator	The yellow LED lights during Serial communication TX output (transmitting).	

Key

UP key	Increases the numeric value.
DOWN key	Decreases the numeric value.
O MODE key	Selects a setting group.
SET/RESET key	Switches the setting modes, and registers the set value.

Light Sensor	Automatically measures and controls brightness of the Conductivity Display,				
	Temperature Display and Action indicators.				

▲ Notice

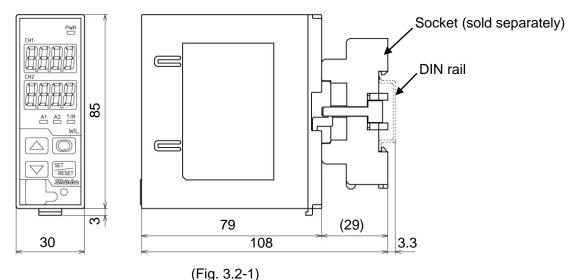
When setting the specifications and functions of this instrument, connect mains power cable to terminals 13 and 14 first, then set them referring from "6. Outline of Key Operation and Setting Groups" to "8. Setup (pp.16 to 38)" before performing "3. Mounting to the Control Panel (p.9)" and "5. Wiring (p.12)".

3. Mounting to the Control Panel

3.1 Site Selection

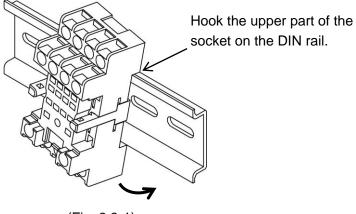
▲ Caution

Use within the following temperature and humidity ranges.


Temperature: 0 to 50° C (32 to 122° F) (No icing), Humidity: 35 to 85 %RH (Non-condensing) If the WIL-102-ECH is installed within a control panel, the ambient temperature of the unit – not the ambient temperature of the control panel – must be kept under 50° C. Otherwise the life of electronic parts (especially electrolytic capacitors) of the unit will be shortened.

This instrument is intended to be used under the following environmental conditions (IEC61010-1): Overvoltage category $\ II$, Pollution degree 2

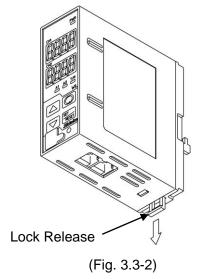
Ensure the mounting location corresponds to the following conditions:

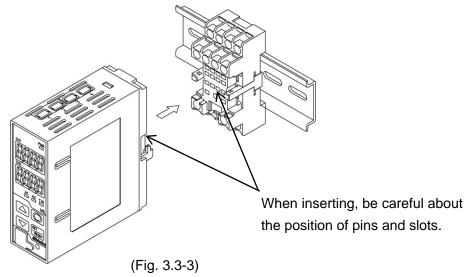

- A minimum of dust, and an absence of corrosive gases
- No flammable, explosive gases
- No mechanical vibrations or shocks
- No exposure to direct sunlight, an ambient temperature of 0 to 50°C (32 to 122°F) that does not change rapidly
- An ambient non-condensing humidity of 35 to 85 %RH
- No large capacity electromagnetic switches or cables through which large current is flowing
- No water, oil, chemicals or the vapors of these substances can come into direct contact with the unit

3.2 External Dimensions (Scale: mm)

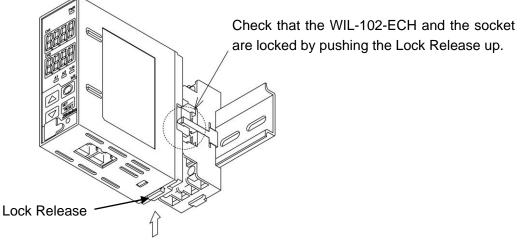
3.3 Mounting

(1) Hook the upper part of the socket on the DIN rail, and mount it (A clicking sound is heard).

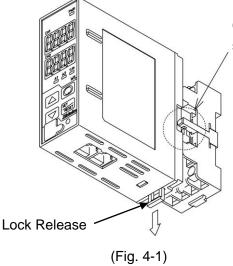



$\underline{\mathbb{A}}$ Caution

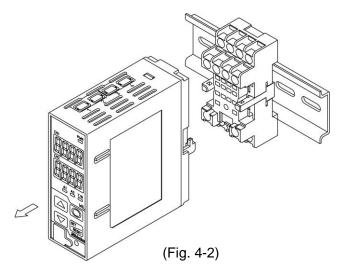
Before inserting the WIL-102-ECH into the socket, wire the unit. Refer to Section "5. Wiring" (p.12).


(2) Check that the Lock Release has been lowered.

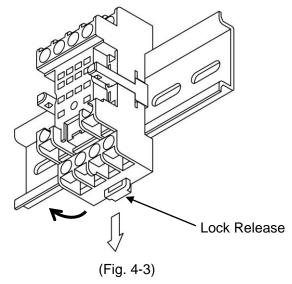
(3) Insert the WIL-102-ECH into the socket.


(4) Fix the WIL-102-ECH and the socket by pushing the Lock Release up.

(Fig. 3.3-4)


4. Removal

- (1) Turn the power supply to the unit OFF.
- (2) Pull the Lock Release down, and release the WIL-102-ECH from the socket.



Check that the WIL-102-ECH and the socket are unlocked by pulling the Lock Release down.

(3) Separate the WIL-102-ECH from the socket.

(4) Remove the socket from the DIN rail by pulling the socket Lock Release (at the bottom of the socket) down.

5. Wiring

Warning

Turn the power supply to the instrument off before wiring or checking. Working on or touching the terminal with the power switched on may result in severe injury or death due to electrical shock.

1 Caution

- Do not leave wire remnants in the instrument, as they could cause a fire or a malfunction.
- Use a solderless terminal with an insulation sleeve in which the M3 screw fits when wiring the unit.
- Tighten the terminal screw using the specified torque. If excessive force is applied to the screw when tightening, the terminal screw may be damaged.
- This instrument does not have a built-in power switch, circuit breaker and fuse. It is necessary to install a power switch, circuit breaker and fuse near the instrument. (Recommended fuse: Time-lag fuse, rated voltage 250 V AC, rated current 2 A)
- For a 24 V AC/DC power source, do not confuse polarity when using direct current (DC).
- Do not apply a commercial power source to the sensor which is connected to the input terminal nor allow the power source to come into contact with the sensor.
- Use the 4-electrode Conductivity Sensor in accordance with the sensor input specifications of this unit.
- Keep the input wires and power lines separate.

Note about the 4-Electrode Conductivity Sensor Cable

- The 4-electrode Conductivity Sensor cable is a highly-insulated (electrical) cable. Please handle it with utmost care as follows.
- The 4-electrode Conductivity Sensor cable should be wired directly to the socket.
- Do not allow terminals and socket of the 4-electrode Conductivity Sensor cable to come in contact with moisture or oil of any kind. Likewise, ensure fingers are clean, otherwise the insulation will deteriorate, resulting in unstable indication.

Be sure to keep the cable dry and clean at all times.

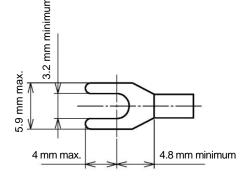
If the cable is stained, clean it with alcohol, and dry it completely.

- For calibration or electrode checking/replacement, the 4-electrode Conductivity Sensor cable should be wired with sufficient length.
- Keep the 4-electrode Conductivity Sensor cable and junction cable away from electrical devices, such as motors or their power lines from which inductive interference emanates.

Connection

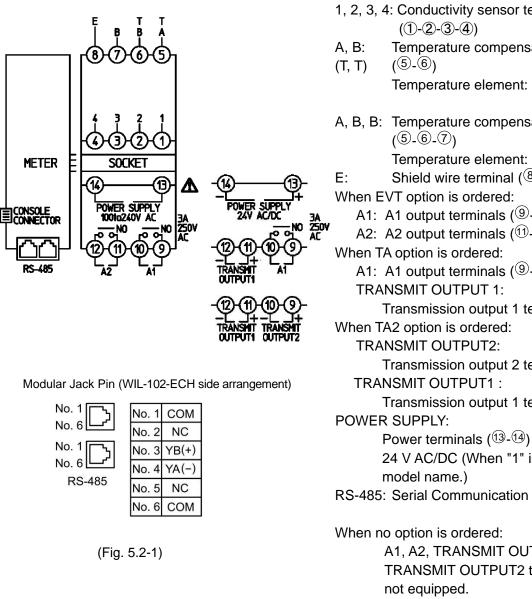
The 4-electrode Conductivity Sensor cable has the following terminals.

Code	Terminal
1	Conductivity sensor terminal 1
2	Conductivity sensor terminal 2
3	Conductivity sensor terminal 3
4	Conductivity sensor terminal 4
A, B (T, T)	Temperature compensation sensor terminals [Pt100 (2-wire), Pt1000] 5-6
A, B, B	Temperature compensation sensor terminals [Pt100 (3-wire)] 5-6-7
E	Shield wire terminal 8


For the electrode with No Temperature Compensation, A, B (T, T) or A, B, B cables are not available. E cables are available depending on the sensor type.

During operation, the Conductivity/Temperature Display may become abnormal or unstable due to inductive interference or noise. In this case, try [Grounding of shield wire terminal (E) (P.77)].

5.1 Lead Wire Solderless Terminal


Use a solderless terminal with an insulation sleeve in which an M3 screw fits as follows. The tightening torque should be 0.63 N·m.

Solderless Terminal	Manufacturer	Model
Y-type	NICHIFU TERMINAL INDUSTRIES CO., LTD.	TMEX1.25Y-3S
	F	

5.2 Terminal Arrangement

- 1, 2, 3, 4: Conductivity sensor terminals 1, 2, 3, 4
 - Temperature compensation sensor terminals Temperature element: Pt100 (2-wire type),

Pt1000

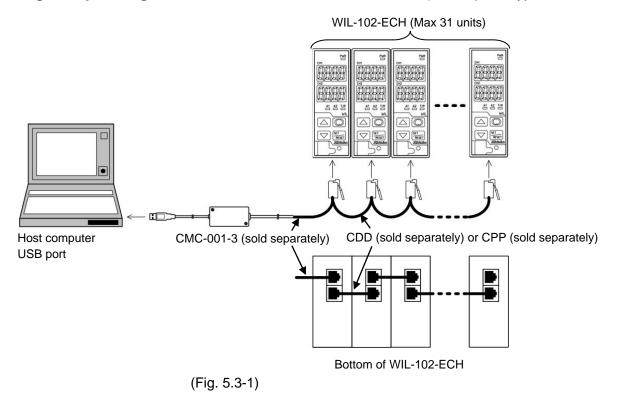
- A, B, B: Temperature compensation sensor terminals
 - Temperature element: Pt100 (3-wire type)
- Shield wire terminal $(^{(8)})$
 - A1: A1 output terminals (9-10)
 - A2: A2 output terminals (11-12)
 - A1: A1 output terminals (9-10)

Transmission output 1 terminals (11-12)

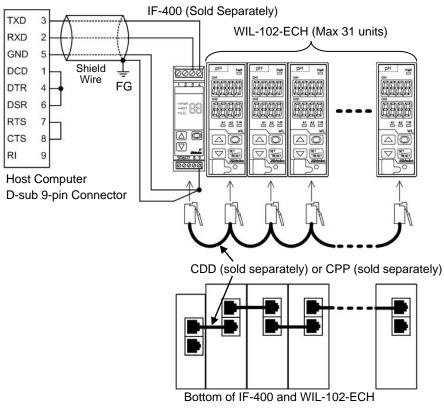
Transmission output 2 terminals (9-0)

Transmission output 1 terminals (1)-(1)

24 V AC/DC (When "1" is added after


RS-485: Serial Communication modular jack

A1, A2, TRANSMIT OUTPUT1, **TRANSMIT OUTPUT2 terminals are**


5.3 Wire the Communication Line.

Connect to the modular jack at the bottom of the instrument, using CDD (sold separately) or CPP (sold separately).

• Wiring Example Using a USB Communication Cable CMC-001-3 (sold separately)

Wiring Example Using a Communication Converter IF-400

(Fig. 5.3-2)

Shield Wire

Be sure to ground only one end of the shield wire so that current cannot flow to the shield wire. If both ends of the shield wire are grounded, the circuit will be closed, resulting in a ground loop. This may cause noise.

Be sure to ground the FG.

Recommended cable: OTSC-VB 2PX0.5SQ (made by Onamba Co., Ltd.) or equivalent (Use a twisted pair cable.)

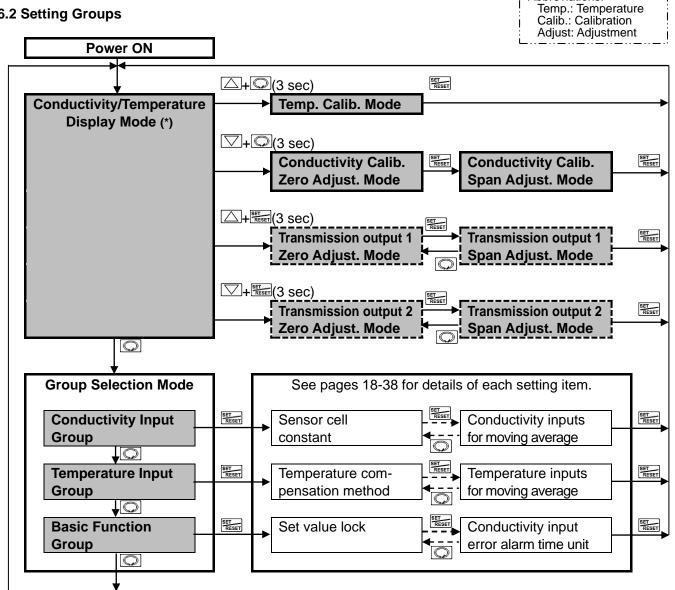
Terminator (Terminal Resistor)

The terminator is mounted at the end of the wire when connecting multiple peripheral devices to a personal computer. The terminator prevents signal reflection and disturbance.

Do not connect a terminator to the communication line because each WIL-102-ECH has built-in pull-up and pull-down resistors.

Communication converter IF-400 (sold separately) has a built-in terminal resistor.

6. Outline of Key Operation and Setting Groups


6.1 Outline of Key Operation

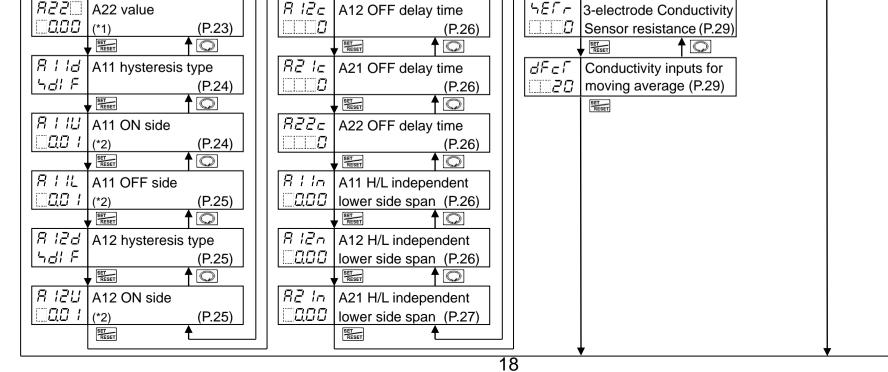
Setting items are divided into groups, and group selection has to be made with keypads. Press the 🔘 key in Conductivity/Temperature Display Mode. The unit enters Group Selection mode.

Abbreviations:

Select a group with the 🔘 key, and press the 🚟 key. The unit enters each setting item. To set each item, use the \bigtriangleup or \bigtriangledown key, and register the set value with the \blacksquare key.

6.2 Setting Groups

(*) Indicates the item selected in [Display selection (p.34)] in Conductivity/Temperature Display Mode.


Available when the TA option or TA2 option is ordered.

Key Operation

- 🖂 + 💭 (3 sec): Press and hold the 🖾 key and 💭 key (in that order) together for 3 seconds. The unit will proceed to Temperature Calibration Mode.
- 🖂 + 🔘 (3 sec): Press and hold the 🖂 key and 😡 key (in that order) together for 3 seconds. The unit will proceed to Conductivity Calibration Zero Adjustment Mode.
- 🖂 + 🚟 (3 sec): Press and hold the 🛆 key and 🚟 key (in that order) together for 3 seconds. The unit enters Transmission Output 1 Zero Adjustment Mode.
- 🖂 + 🚟 (3 sec): Press and hold the 🖂 key and 🚟 key (in that order) together for 3 seconds. The unit enters Transmission Output 2 Zero Adjustment Mode.
- 💭, 🚟: Press the 🔘 or 🖼 key. The unit will enter the next setting item, illustrated by an arrow.
- Est or O: Press the control key until the desired setting mode appears.
- To revert to Conductivity/Temperature Display Mode, press and hold the 🔘 key for 3 seconds while in any mode.

7. Key Operation Flowchart

Power ON	n Flowchart	Abbreviations: Adjust.: Adjustment
		H/L: High/Low limits
Conductivity/Temper-]	
△+◎ (3 sec)	► Calibration	
✓+ (3 sec)	Rはよき Conductivity Calibration Rはよ □000 Zero Adjust. Mode (P.39)	
→+ ^{ser} Reser (3 sec)	RUE / Transmission output 1 □ ロロロ Zero Adjust. Mode (P.42)	Image: Transmission output 1 Image: Description output 1 Image: Descr
→+ ^{ser} (3 sec)	RJEご Transmission output 2	Image: Constraint of the second state Image: Constraint of the second state Image: Constraint of the second state Image: Constraint of the second state Image: Constraint of the second state Image: Constraint of the second state Image: Constraint of the second state Image: Constraint of the second state Image: Constraint of the second state Image: Constraint of the second state Image: Constraint of the second state Image: Constraint of the second state Image: Constraint of the second state Image: Constraint of the second state Image: Constraint of the second state Image: Constraint of the second state Image: Constraint of the second state Image: Constraint of the second state Image: Constraint of the second state Image: Constraint of the second state Image: Constraint of the second state Image: Constraint of the second state Image: Constraint of the second state Image: Constraint of the second state Image: Constraint of the second state Image: Constraint of the second state Image: Constraint of the second state Image: Constraint of the second state Image: Constraint of the second state Image: Constraint of the second state Image: Constraint of the second state Image: Constraint of the second state Image: Constraint of the second state Image: Constraint of the second state Image: Constraint of the second state Image: Constraint of the second state Image: Constraint of the second st
F.ac. / Conductivity Input		F.a.c.ਟ Temperature Input
ELL Sensor cell constant	🖪 IZL A12 OFF side 🕄 Z = A22 H/L indepen	ndent
(P.20) ↓ ^{Str}	□ □ </th <th>(P.27) □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □</th>	(P.27) □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
CEF Cell constant にロロロ correction value (P.20)	Rさける A21 hysteresis type らけ F (P.25) D DDD upper side span	
レード Measurement unit この日 (P.21)	<i>R2 IU</i> A21 ON side □ 00 I (*2) (P.25) □ 000 upper side span	(P.27)
↓	↓ Exer ↓ □ ↓ □ □ <t< th=""><th>hodent d^P d^P d^P d^P d^P d^P d^P d^P</th></t<>	hodent d ^P
2000 (P.21)	│	(P.27) (P.30)
↓ ∰erer ↑ © 「ゴー」と TDS conversion	Image: style	$\begin{array}{c c} & & & & & \\ \hline \square \\ \hline \hline \hline \square \\ \hline \square \\ \hline \hline \square \\ \hline \square \\ \hline \square \\ \hline \hline \hline \square \\ \hline \hline \square \\ \hline \hline \hline \hline$
↓ factor (P.22)	J J L GGG upper side span ↓ ★ ★ ★	(P.27) (P.27) (P.30) (P
R I IF A11 type	REEU A22 ON side RUH A11 hysteresis	Cable length correction
(P.22) ↓ ^{SET} ↑ ○		(P.28) (P.30) CO (P.30)
R IZF A12 type (P.23)	<i>R∂∂L</i> A22 OFF side <i>R 1∂H</i> A12 hysteresis □Ω□ / (*2) (P.25) □Ω□ /	(P.28) $\Box \Box \Box \exists \Box $
SET RESET	SET RESET	
R2 IF A21 type EEEEE (P.23)		(P.28)
Image: second	Image: Image	$ \Box F = I $ Temperature inputs for
(P.23)		(P.29)
	<i>月ご lo</i> A21 ON delay time <i>I Err</i> A□□ output wh	en input
(*1) (P.23) ↓ SEET ↑ ©	Image: Second secon	(P.29)
R IZ A12 value	A22 ON delay time	ut filter
(P.23) ↓ Street	□ (P.26) I ime constant ↓ SEEser	(P.29)
<i>R Z I</i> A21 value <i>Q Q Q</i> (*1) (P.23) ↓ Steer ↑ ◯	Image: Second conductivity in the second conductivity in t	ut

-2)

About Setting Items

cELL	Sensor cell constant	
	(P.20)	
[rol	Transmission output 1	
Ec	type (P.32)	

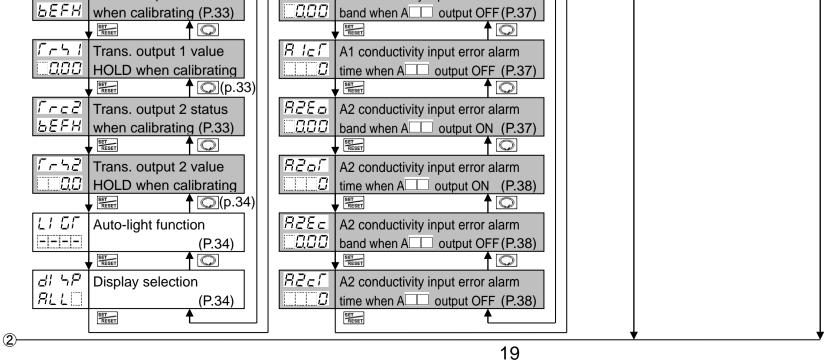
• Upper left: Conductivity Display: Indicates the setting item characters. • Lower left: Temperature Display: Indicates the factory default.

• Right side: Indicates the setting item and reference page.

Setting item in shaded section will be displayed only when the corresponding option is ordered.

If the TA option is added, A2 related setting items are not available.

If the TA2 option is added, A1 and A2 related setting items are not available.


(*1): Factory default value is different depending on the selection in [A represented to the selection of th

(*2): Factory default value is different depending on the selection in [A type]. Conductivity input: 0.10, Temperature input: 1.0°C

About Key Operation

- \square + \square (3 sec): Press and hold the \square , \square keys (in that order) for 3 sec. The unit enters Temperature calibration mode.
- 🖂 + 🖾 (3 sec): Press and hold the 🖾, 💿 keys (in that order) for 3 sec. The unit enters Conductivity calibration zero adjustment mode.
- 🖂 + 🚟 (3 sec): Press and hold the 🛆, 🖼 keys (in that order) for 3 sec. The unit enters Transmission output 1 zero adjustment mode.
- 🖂+🚟 (3 sec): Press and hold the 🖂, 🚟 keys (in that order) for 3 sec. The unit enters Transmission output 2 zero adjustment mode.
- \bigcirc or $\underbrace{\mathbb{E}}_{\mathbb{E}}$: Press the \bigcirc or $\underbrace{\mathbb{E}}_{\mathbb{E}}$ key. The unit enters the next setting item.
- To revert to Conductivity/Temperature Display Mode, press and hold the 🔘 key for 3 sec while in any mode.

		Abbreviation:
$af \mathcal{E}r$ Basic Function Group	\bigcirc	Trans: Transmission
SET RESET		
Lock Set value lock	$\Gamma I \overline{\Delta E}$ Indication time	\bar{n}_{-} - Conductivity input error
		ークE こ alarm time unit (P.38)
▼ Communication	$\Box \vdash d \vdash P$ Temperature Display when no	<u>L RESET</u>
protocol (P.31)	$\Box = F F \Box$ temperature compensation (P.34)	
Instrument number	$\frac{B}{B} \frac{1}{2} \frac{F}{F}$ A1 output allocation	
(P.31) ↓ SET ↑ ○		
▼ ^{™EEET} Communication	$\overrightarrow{RPP} $	
35 speed (P.31)	R2 (P.35)	
RESET	SET RESET	
c ゔ F i Data bit/Parity	Output ON time when	
[][[][][[][][][][][][][][][][][][][][]	A1 output ON (P.35)	
▼ TREET C		
(P.32)	A1 output ON (P.36)	
Transmmision output 1	Output ON time when	
	A2 output ON (P.36)	
「 ー H I Transmmision output 1	$\bigcirc P \in \mathbb{R}^{2}$	
2000 high limit (P.32)	A2 output ON (P.36)	
SET CO		
Transmmision output 1	<i>B</i> <i>IE</i> A1 conductivity input error	
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	Image: state	
Transmmision output 2	A2 conductivity input error	
$r E \overline{\rho} P$ type (P.32)	alarm A $-$ type (P.36)	
ICALTransmmision output 2IDDDhigh limit(P.33)	$B_{1}E_{2}$ A1 conductivity input error alarm	
HIIIII high limit (P.33)	band when A output ON(P.37)	
$\begin{array}{c c} & & & \\ \hline \\ \hline$	I I Conductivity input error alarm	
low limit (P.33)	time when A output ON (P.37)	
$\frac{\Gamma - c}{\Gamma - c}$ Trans. output 1 status	BIE A1 conductivity input error alarm	

8. Setup

Before using this instrument, setup should be performed to suit the conditions of usage:

Setting the Cell constant correction value, Measurement unit, A11, A12, A21 and A22 types,

Temperature compensation method, Communication, $A \Box \Box$ output when input errors occur, etc.

Setup can be conducted in the Conductivity Input Group, Temperature Input Group and Basic Function Group.

If the user's specification is the same as the factory default value of the WIL-102-ECH, or if setup has already been completed, it is not necessary to set up the instrument. Proceed to Section "9. Calibration (p.39)".

8.1 Turn the Power Supply ON.

For approximately 4 seconds after the power is switched ON, the input characters are indicated on the Conductivity Display and Temperature Display. See (Table. 8.1-1). **(Table. 8.1-1)**

Display	Character	Measurement Unit			
	conð	Conductivity (mS/cm, μ S/cm)			
	5/	Conductivity (S/m, mS	Conductivity (S/m, mS/m)		
Conductivity Display	5 <i>E R</i>	Seawater salinity (%)			
	5 <i>81_</i> 5	NaCl salinity (%)			
	rds.	TDS conversion (g/L, mg/L)			
Dioplay	Character	Input Temperature	Selection Item in		
Display	Character	Specification (*)	[Pt100 Input Wire Type] (p.30)		
	PF2	Pt100	<i>₽</i> / ⁻ <i>ב</i> ['] : 2-wire type		
Temperature Display	PF3	PIIOU	<i>₽/</i> □∃ : 3-wire type		
	PF 10	Pt1000			

(*) This input temperature specification was specified when ordering.

During this time, all outputs are in OFF status, and LED indicators except the PWR Indicator turn off. After that, measurement starts, indicating the item selected in [Display selection (p.34)]. This status is called Conductivity/Temperature Display Mode.

8.2 Conductivity Input Group

To enter the Conductivity Input Group, follow the procedure below.

- 1) F.n.c. / Press the 🔘 key in Conductivity/Temperature Display Mode.
- 2 *cELL* Press the **E** key.

The unit enters the Conductivity Input Group, and "Sensor cell constant" is indicated.

Character	Setting Item, Function, Setting Range	Factory Default
cELL	Sensor cell constant	1.0/cm
10	 Selects sensor cell constant. 	
	If the Sensor cell constant is changed, Conductive values and Cell constant correction value will Set the Cell constant correction value again, a and Span adjustment values. • Selection item: □□ ↓□ : 1.0/cm □ ↓□□ : 10.0/cm	be cleared.
c 66F 1000	 Cell constant correction value Sets sensor cell constant correction value. <i>□ □ ⊑ □ ⊑ □</i> and conductivity are displayed alternately Setting range: 0.001 to 5.000 	1.000 y.

Character	Setting Item, Function	on, Setting Range	Factory Default	Factory Default			
Uni F	Measurement unit		Conductivity (mS/cm, µS/cm)	-			
conð	Selects the conductivity unit.						
	If the conductivity unit is changed, Conductivity Zero and Span adjustment values						
	will be cleared. Re-calibrate the Conductivity Zero and Span adjustment values.						
	However, if the following is changed, the Conductivity Span adjustment value will						
		-	ductivity Zero adjustment value.				
	salinity (%).	Changing from Conductivity (mS/cm, S/m) to Seawater salinity (%) or NaCl salinity (%)					
		vater salinity (%) o	r NaCl salinity (%) to Conductivity (mS	S/cm,			
	S/m).						
	Changing from Sear	water salinity (%) t	o NaCl salinity (%).				
	 Selection item: 						
	ເວລີ : Conductivity (mS/cm, μ S/cm)					
	- : Conductivity (S/m, mS/m)					
	- <i>ΕR</i> : Seawater salir	nity (%)					
	らおとに : NaCl salinity(
	「」」:TDS conversio	on (g/L, mg/L)					
nrnG	Measurement range		20.00 mS/cm				
2000	Selects the measurement	-	-				
	-	s changed, Condu	ctivity Zero and Span adjustment val	ues			
	will be cleared.	- (i					
	Re-calibrate the Condu		for cell constant and measurement unit.				
	When sensor cell cons (Table 8.2-1)	stant 1.0/cm is sele					
	Measurement Unit Selection Item Measurement Range						
		2000	0.00 to 20.00 mS/cm				
		2000	0.0 to 200.0 mS/cm				
		5000	0.0 to 500.0 mS/cm				
	Conductivity	500	0 to 500 mS/cm				
	(mS/cm, μ S/cm)	2000	0.000 to 2.000 mS/cm				
		5000	0.000 to 5.000 mS/cm				
		5000	0.00 to 50.00 mS/cm				
		2000	0 to 2000 µS/cm				
		5000	0 to 5000 µS/cm				
		2000	0.000 to 2.000 S/m				
		2000	0.00 to 20.00 S/m				
		5000	0.00 to 50.00 S/m				
	Conductivity	500	0.0 to 50.0 S/m				
	(S/m, mS/m)	2000	0 to 2000 mS/m				
		5000	0.000 to 5.000 S/m				
		2000	0.0 to 200.0 mS/m				
		5000	0.0 to 500.0 mS/m				
			0.0 to 20.0 g/L				
	TDS conversion		0 to 200 g/L				
		<u> </u>	0 to 500 g/L				
	(g/L, mg/L)						
1	(g/∟, mg/∟)	2000	0 to 2000 mg/L				
		5000	0 to 5000 mg/L				
	(g/L, mg/L) Seawater salinity (%) NaCl salinity (%)						

Character	Setting Item, Funct			lt
	When sensor cell constant 10.0/cm is selected:			
	(Table 8.2-2) Measurement Unit	Selection Item	Macouromont Dongo	
		2000	Measurement Range	
	Conductivity	5000	0.0 to 500.0 mS/cm	
	(mS/cm)	2000	0 to 2000 mS/cm	
		2000	0.00 to 20.00 S/m	
	Conductivity	5000	0.00 to 50.00 S/m	
	(S/m, mS/m)	2000	0.0 to 200.0 S/m	
		200	0 to 200 g/L	
	TDS conversion (g/L)	500	0 to 500 g/L	
		2000	0 to 2000 g/L	
	Seawater salinity (%)	400	0.00 to 4.00%	
	NaCl salinity (%)	2000	0.00 to 20.00%	
=				
ΓdhE ⊡a⊆a	TDS conversion factorSets TDS conversion factor	tor	0.50	
<u>aso</u>			ion (g/L)] is selected in [Measurem	nent unit]
	Setting range: 0.30 to 1.0			ioni anitj.
RIIF	A11 type		No action	
	Selects an A11 type.			
	Note: If A11 type is char	nged, the A11 val	ue defaults to 0.00 or 0.0.	
	: No action			
	E = L: Conductivity in			
	E = H: Conductivity in			
	「			
				8 2-3)] (n 23)
	$E = a \Gamma$: Error output [Output turns ON when the error type is "Error".(Table 8.2-3)] (p.23) $F = \Gamma L$: Fail output [Output turns ON when the error type is "Fail". (Table 8.2-3)] (p.23)			
	$E \subseteq H \subseteq$: Conductivity input High/Low limits independent action (Fig. 8.2-2) (p.23)			
	<i>L nH</i> ^L : Temperature input High/Low limits independent action (Fig. 8.2-2) (p.23)			
	A11 action (Activated b	ased on the indic	cation value.)	
	Conductivity input I		Conductivity input high limit a	action,
	Temperature input I		Temperature input high limit	action
	If Medium Value is selected hysteresis type]:	ed in [A11	If Medium Value is selected in [A11 hysteresis type]:	
	A11 ON s	ides	A11 ON sides	
		N I		
	ON A			- ON
	OFF	↓		- OFF
	A11 valu	IP	A11 value	011
	If Reference Value is sele		If Reference Value is selected in [A11	
	hysteresis type]:		hysteresis type]:	
	A11 ON side*	A11 OFF side*	A11 OFF side* A11 ON sid	e*
		K		
	ON A	+		— ON
	OFF			- OFF
	A11	value (Fim	A11 value	
	* Setting Example:	(⊢ıg.	8.2-1)	
		.)] is set to 0.00 o	r 0.0, A11 output can be turned ON	1
	at the value set in [A11	value ($\exists I \mid I $)].		
	If [A11 OFF side $(\overline{B} + \overline{B}_{-})$] is set to 0.00 or 0.0, A11 output can be turned OFF			FF
	at the value set in [A11 value ($\beta \downarrow I$].			

Character	Setting Iter	n, Function, Setting F	Range	Factory Default	
		Conductivity input High/Low limits independent action,			
	Tempera	Temperature input High/Low limits independent action			
		A11 hysteresis	A11 hyst	teresis	
			¥		
	0				
	0	DFF —	<u>+ </u>		
	A11	High/Low limits A11 valu	0	n/Low limits	
	independent lo	ower side span	indepen	dent upper side span	
		(Fig. 8.2-2	2)		
	• Error output, (Table. 8.2-3)		-)		
	Error Type	Error		Description	
	Fail	Temperature sensor burnout.	Temperati	ure sensor lead wire is burnt out.	
	Fail	Temperature sensor short-circuited	Temperate short-circu	ure sensor lead wire is uited.	
	Error	Outside temperature compensation range	Measured	temperature has exceeded 110.0°C.	
	Error	Outside temperature compensation range	Measured	temperature is less than 0.0°C.	
<u> 8 IZF</u>	A12 type			No action	
	Selects an A12	rpe. pe is changed, the A	12 value da	afaults to 0.00 or 0.0	
RZ IF	A21 type	For the selection item and action, refer to A11 type. (pp.22, 23) 21 type No action			
	Selects an A21	type.			
	Note: If A21 ty	pe is changed, the A	21 value de	efaults to 0.00 or 0.0.	
		on item and action, refe	er to A11 ty		
822F	A22 type	No action		No action	
	Selects an A22	<i>y</i> 1			
	-	pe is changed, the A			
811		on item and action, refe			
	• Sets an A11 va		uctivity inpu	it: 0.00 mS/cm, Temperature input: 0.0℃	
:; / (, /_ _/ //			Ecol (Fr	ror output) or <i>F帠/ L</i> (Fail output)	
	is selected in [/		·_··· (LI		
	• Setting range:	-711.			
		put: Measurement rang	ge low limit	to Measurement range high limit (*1)	
	Temperature in	put: 0.0 to 100.0°C (*2)			
R 12	A12 value	Cond	uctivity inpu	it: 0.00 mS/cm, Temperature input: 0.0℃	
<i>00</i>		 Sets an A12 value. Indication condition and setting range are the same as those of A11 value. (p.23) 			
R2 I()	A21 value			it: 0.00 mS/cm, Temperature input: 0.0°C	
000	• Sets an A21 va		ź _ !		
	Indication cond	dition and setting range	are the sa	me as those of A11 value. (p.23)	
R22[]	A22 value			it: 0.00 mS/cm, Temperature input: 0.0°C	
0.00	• Sets an A22 va				
	• Indication condition and setting range are the same as those of A11 value. (p.23)				
(*4) TI	1). The measurement unit and decimal point place follow the measurement range				

(*1): The measurement unit and decimal point place follow the measurement range.

(*2): The placement of the decimal point does not follow the selection. It is fixed.

Character	Setting Ite	m, Function	, Setting Range	Factory Default				
R I Id	A11 hysteresis ty			Reference Value				
SdLF		hysteresis type (Medium or Reference Value).						
	• Not available if $\Box \Box \Box \Box$ (No action), $E \neg \Box f$ (Error output) or $FRI \downarrow$ (Fail output)							
	is selected in [A11 type].							
	• Selection item:							
	<i>こぱけ</i> ^デ : Medium							
				des in relation to A11 value.				
		N side needs	to be set.					
		ーゴーF: Reference Value						
			s for ON and OFF sides					
<u></u>		N and OFF si	des need to be set indivi					
R I IU	A11 ON side			Conductivity input: 0.01 mS/cm Temperature input: 1.0°C				
00 1	Sets the span of		L					
				sis type], the span of ON/OFF				
	side will be the s		selected in [ATT hysteres	sis type], the span of ON/OFF				
			option) Error o	utput) or <i>F用</i>				
	is selected in [A1	•						
	-		ng on the coloctions of A	11 type and measurement range.				
		iers dependi	ig on the selections of A	rr type and measurement range.				
	(Table 8.2-4)	.						
	А Туре	IVIE	asurement Range	Setting Range				
			0.00 to 20.00 mS/cm	0.00 to 2.00 mS/cm				
			0.0 to 200.0 mS/cm	0.0 to 20.0 mS/cm				
			0.0 to 500.0 mS/cm	0.0 to 50.0 mS/cm				
			0 to 500 mS/cm 0.000 to 2.000 mS/cm	0 to 50 mS/cm 0.000 to 0.200 mS/cm				
			0.000 to 5.000 mS/cm					
			0.00 to 50.00 mS/cm	0.00 to 5.00 mS/cm				
			0 to 2000 µS/cm	0 to 200 <i>µ</i> S/cm				
			0 to 5000 µS/cm	0 to 500 <i>µ</i> S/cm				
			0.000 to 2.000 S/m	0.000 to 0.200 S/m				
		Cell	0.00 to 20.00 S/m	0.00 to 2.00 S/m				
		constant	0.00 to 50.00 S/m	0.00 to 5.00 S/m				
		1.0/cm	0.0 to 50.0 S/m	0.0 to 5.0 S/m				
			0 to 2000 mS/m	0 to 200 mS/m				
			0.000 to 5.000 S/m	0.000 to 0.500 S/m				
	Conductivity		0.0 to 200.0 mS/m	0.0 to 20.0 mS/m				
	input		0.0 to 500.0 mS/m	0.0 to 50.0 mS/m				
			0.0 to 20.0 g/L	0.0 to 2.0 g/L				
			0 to 200 g/L	0 to 20 g/L				
			0 to 500 g/L	0 to 50 g/L				
			0 to 2000 mg/L	0 to 200 mg/L				
			0 to 5000 mg/L	0 to 500 mg/L				
			0.0 to 200.0 mS/cm	0.0 to 20.0 mS/cm				
			0.0 to 500.0 mS/cm	0.0 to 50.0 mS/cm				
			0 to 2000 mS/cm	0 to 200 mS/cm				
		Cell	0.00 to 20.00 S/m	0.00 to 2.00 S/m				
		constant	0.00 to 50.00 S/m	0.00 to 5.00 S/m				
		10.0/cm	0.0 to 200.0 S/m	0.0 to 20.0 S/m				
			0 to 200 g/L	0 to 20 g/L				
			0 to 500 g/L	0 to 50 g/L				
			0 to 2000 g/L	0 to 200 g/L				
			salinity 0.00 to 4.00%	0.00 to 0.40%				
			ity 0.00 to 20.00%	0.00 to 2.00%				
	Temperature input	0.0 to 100	0°C	0.0 to 10.0℃				

/cm
ge.
24) /om
/cm
/cm
)
24)
′cm
/cm
0
)
p.24)
′cm
/cm
CIII
)
·
ν ζ

Character	Setting Item, Function, Setting Range	Factory Default		
R 12o	A12 ON delay time	0 seconds		
0	Sets A12 ON delay time.			
	The A12 does not turn ON (under the conditions of turning ON) until the time set in			
	[A12 ON delay time] elapses.			
	 Indication condition and setting range are the same as 	those of A11 ON delay time (p.25)		
82 10				
	A21 ON delay time	0 seconds		
	• Sets A21 ON delay time.			
	The A21 does not turn ON (under the conditions of turn	ning ON) until the time set in		
	[A21 ON delay time] elapses.			
	Indication condition and setting range are the same as	those of A11 ON delay time.		
	(p.25)			
8220	A22 ON delay time	0 seconds		
0	Sets A22 ON delay time.			
	The A22 does not turn ON (under the conditions of turr	ning ON) until the time set in		
	[A22 ON delay time] elapses.			
	• Indication condition and setting range are the same as	those of A11 ON delay time(p.25)		
R I Ic	A11 OFF delay time	0 seconds		
	Sets A11 OFF delay time.			
	The A11 does not turn OFF (under the conditions of tur	ning OFF) until the time set in		
	[A11 OFF delay time] elapses.	5 ,		
	• Not available if EEEE (No action), Eror ou	tput) or <i>F帠Լ L</i> (Fail output)		
	is selected in [A11 type].			
	Setting range: 0 to 9999 seconds			
A 12c	A12 OFF delay time	0 seconds		
<u> </u>	Sets A12 OFF delay time.			
	The A12 does not turn OFF (under the conditions of tur	rning OFF) until the time set in		
	[A12 OFF delay time] elapses.			
	• Indication condition and setting range are the same as	those of A11 OFF delay time.(p.26)		
82 Ic	A21 OFF delay time	0 seconds		
	Sets A21 OFF delay time.			
	The A21 does not turn OFF (under the conditions of tur	rning OFF) until the time set in		
	[A21 OFF delay time] elapses.			
	 Indication condition and setting range are the same as 	those of A11 OFF delay time.(p.26)		
822c	A22 OFF delay time	0 seconds		
0	Sets A22 OFF delay time.			
	The A22 does not turn OFF (under the conditions of tur	rning OFF) until the time set in		
	[A22 OFF delay time] elapses.			
	Indication condition and setting range are the same as			
RIIn	A11 High/Low limits independent	Conductivity input: 0.00 mS/cm		
000	lower side span	Temperature input: 0.0°C		
	• Sets the lower side span of A11 High/Low limits independent of A11 High/Low limits independent to 0.00 or 0.0%	endent action.		
	Disabled when set to 0.00 or 0.0° C.	mite independent estimates		
	・Available when EcHL (Conductivity input High/Low lin 「こHL (Temperature input High/Low limits independer			
	• Setting range:	it action) is selected in [ATT type].		
	Conductivity input: Measurement range low limit to Me	asurement range high limit (*4)		
	Temperature input: 0.0 to 100.0° (*2)			
8 IZn	A12 High/Low limits independent	Conductivity input: 0.00 mS/cm		
	lower side span	Temperature input: 0.0℃		
:;/_/,/_/ /_/	Sets the lower side span of A12 High/Low limits independent	· · · · ·		
	• For the action, indication condition and setting range, r			
	independent lower side span]. (p.26)			
	urement unit and decimal point place follow the measurement range.			

(*1): The measurement unit and decimal point place follow the measurement range. (*2): The placement of the decimal point does not follow the selection. It is fixed.

Character	Setting Item, Function, Setting Range	Factory Default		
RZ In	A21 High/Low limits independent	Conductivity input: 0.00 mS/cm		
	lower side span	Temperature input: 0.0℃		
	Sets the lower side span of A21 High/Low limits independent action.			
	For the action, indication condition and setting range, refer to [A11 High/Low limits			
	independent lower side span]. (p.26)			
822n	A22 High/Low limits independent	Conductivity input: 0.00 mS/cm		
	lower side span	Temperature input: 0.0°C		
	• Sets the lower side span of A22 High/Low limits indepe	ndent action.		
	• For the action, indication condition and setting range, re	efer to [A11 High/Low limits		
	independent lower side span]. (p.26)			
R P	A11 High/Low limits independent	Conductivity input: 0.00 mS/cm		
	upper side span	Temperature input: 0.0℃		
	Sets the upper side span of A11 High/Low limits independent	endent action.		
	Disabled when set to 0.00 or 0.0℃.			
	• Available when $\mathcal{E} \subset \mathcal{H}_{\mathcal{L}}$ (Conductivity input High/Low limits independent a			
	「「ーーー」(Temperature input High/Low limits independen	t action) is selected in [A11 type].		
	Setting range:			
	Conductivity input: Measurement range low limit to Measurement range high limit (*1)			
8 129	Temperature input: 0.0 to 100.0°C (*2)	Conductivity input: 0.00 mS/cm		
	A12 High/Low limits independent	Temperature input: 0.0℃		
	upper side span	· ·		
	• Sets the upper side span of A12 High/Low limits indepe			
	• For the action, indication condition and setting range, re-	eler to [ATT High/Low limits		
R2 IP	independent upper side span]. (p.27)	Conductivity input: 0.00 mS/cm		
ne ir [].000	A21 High/Low limits independent	Temperature input: 0.0°C		
	upper side span	· ·		
	Sets the upper side span of A21 High/Low limits independent of the set o			
	• For the action, indication condition and setting range, r	eter to [A11 High/Low limits		
חררח	independent upper side span]. (p.27)	Conductivity input: 0.00 m2/cm		
8228	A22 High/Low limits independent	Conductivity input: 0.00 mS/cm Temperature input: 0.0°C		
000	upper side span	· · ·		
	• Sets the upper side span of A22 High/Low limits indepe			
	• For the action, indication condition and setting range, refer to [A11 High/Low limits			
	independent upper side span]. (p.27)			

(*1): The measurement unit and decimal point place follow the measurement range.(*2): The placement of the decimal point does not follow the selection. It is fixed.

Character	Setting Ite	m, Function	, Setting Range	Factory Default	
8 I IX	A11 hysteresis			Conductivity input: 0.01 mS/cm	
<u> </u>				Temperature input: 1.0℃	
	Sets hysteresis of A11 High/Low limits independent action.				
	• Available when $\mathcal{E} \subset \mathcal{H}'_{\mathcal{L}}$ (Conductivity input High/Low limits independent action) or				
	TaHL (Temperature input High/Low limits independent action) is selected in [A11 type].				
	• Setting range differs depending on the selections of A11 type and measurement range.				
	(Table 8.2-5)				
	A Type	Меа	asurement Range	Setting Range	
			0.00 to 20.00 mS/cm	0.01 to 2.00 mS/cm	
			0.0 to 200.0 mS/cm	0.1 to 20.0 mS/cm	
			0.0 to 500.0 mS/cm	0.1 to 50.0 mS/cm	
			0 to 500 mS/cm	1 to 50 mS/cm	
			0.000 to 2.000 mS/cm	0.001 to 0.200 mS/cm	
			0.000 to 5.000 mS/cm	0.001 to 0.500 mS/cm	
			0.00 to 50.00 mS/cm	0.01 to 5.00 mS/cm	
			0 to 2000 µS/cm	1 to 200 <i>µ</i> S/cm	
			0 to 5000 µS/cm	1 to 500 µS/cm	
		Cell	0.000 to 2.000 S/m	0.001 to 0.200 S/m	
		constant	0.00 to 20.00 S/m	0.01 to 2.00 S/m	
		1.0/cm	0.00 to 50.00 S/m	0.01 to 5.00 S/m	
		1.0/011	0.0 to 50.0 S/m	0.1 to 5.0 S/m	
			0 to 2000 mS/m	1 to 200 mS/m	
			0.000 to 5.000 S/m	0.001 to 0.500 S/m	
	Conductivity		0.0 to 200.0 mS/m	0.1 to 20.0 mS/m	
	input		0.0 to 500.0 mS/m	0.1 to 50.0 mS/m	
	in par		0.0 to 20.0 g/L	0.1 to 2.0 g/L	
			0 to 200 g/L	1 to 20 g/L	
			0 to 500 g/L	1 to 50 g/L	
			0 to 2000 mg/L	1 to 200 mg/L	
			0 to 5000 mg/L	1 to 500 mg/L	
			0.0 to 200.0 mS/cm	0.1 to 20.0 mS/cm	
			0.0 to 500.0 mS/cm	0.1 to 50.0 mS/cm	
			0 to 2000 mS/cm	1 to 200 mS/cm	
		Cell	0.00 to 20.00 S/m	0.01 to 2.00 S/m	
		constant	0.00 to 50.00 S/m	0.01 to 5.00 S/m	
		10.0/cm	0.0 to 200.0 S/m	0.1 to 20.0 S/m	
			0 to 200 g/L	1 to 20 g/L	
			0 to 500 g/L	1 to 50 g/L	
			0 to 2000 g/L	1 to 200 g/L	
			salinity 0.00 to 4.00%	0.01 to 0.40%	
		NaCI salin	ity 0.00 to 20.00%	0.01 to 2.00%	
	Temperature	0.0 to 100	.0°C	0.1 to 10.0℃	
	input				
R 12H	A12 hysteresis			Conductivity input: 0.01 mS/cm	
<i>□</i> 00 /				Temperature input: 1.0℃	
	-	•	ow limits independent act		
		condition ar	nd setting range, refer to [
R2 IH	A21 hysteresis			Conductivity input: 0.01 mS/cm	
<u> </u>				Temperature input: 1.0℃	
	-	-	ow limits independent act		
	• For the indication condition and setting range, refer to [A11 hysteresis]. (p.28)				

Character	Setting Item, Function, Setting Range	Factory Default		
<i>822H</i>	A22 hysteresis	Conductivity input: 0.01 mS/cm		
<u> </u>		Temperature input: 1.0°C		
	 Sets hysteresis of A22 High/Low limits independent action. 			
	• For the indication condition and setting range, refer to [A11 hysteresis]. (p.28)		
lErr	A output when input errors occur	Disabled		
oFF	• Selects whether to enable or disable A \Box output in the	e event of an input error such as a		
	conductivity sensor burnout or short circuit.			
	If Enabled is selected, $A \square \square$ output and $A \square \square$ output st	tatus will be maintained in the		
	event of an input error.			
	If Disabled is selected, $A \square \square$ output and $A \square \square$ output s	tatus will be turned OFF in the		
	event of an input error.	~		
	• Available when $\mathcal{E}_{\mathcal{F}} = \mathcal{L}_{\mathcal{F}}$ (Conductivity input low limit ac			
	high limit action), $\int \vec{n} P L$ (Temperature input low limit a	action) or <i>にとけ</i> る (Temperature		
	input high limit action) is selected in [A $\Box\Box$ type].			
	• Selection item:			
	oFF Disabled	0.0 accorde		
F; F; 00	Conductivity input filter time constant	0.0 seconds		
:;/=/,/=/	 Sets Conductivity input filter time constant. If the value is set too large, it affects A output due to 	a the delay of response		
	Setting range: 0.0 to 10.0 seconds	o the delay of response.		
E 40	Conductivity input sensor correction	0.00 mS/cm		
000	Sets conductivity input sensor correction value.			
	This corrects the measured value from the Conductivit	ty Sensor. When a sensor cannot		
	be set at the exact location where measurement i	-		
	conductivity may deviate from the conductivity in the m			
		conductivity can be obtained by adding a sensor correction value.		
	However, it is effective within the measurement range re	vever, it is effective within the measurement range regardless of the sensor correction		
	value.			
	Conductivity after sensor correction = Current conductivity + (Sensor correction value			
	• Setting range: ±10% of measurement span (*)			
5EF -	3-electrode Conductivity Sensor resistance	0 Ω		
ß	• If the 3-electrode Conductivity Sensor is used, set the resistance value of 3-electrode			
	Conductivity Sensor.			
	• Setting range: 0 to 100 Ω			
dFcf	Conductivity inputs for moving average	20		
<i>20</i>	Set the number of conductivity inputs used to obtain mo	• •		
	An average conductivity input value is calculated using			
	conductivity inputs. The conductivity input value is repla			
	However, the conductivity input moving average functio	n is disabled in conductivity		
	calibration mode or in temperature calibration mode.			
	Setting range: 1 to 120			

(*): The measurement unit and decimal point place follow the measurement range.

8.3 Temperature Input Group

To enter the Temperature Input Group, follow the procedure below.

(1) F.n.c. \vec{c} Press the \square key twice in Conductivity/Temperature Display Mode.

② / ⊂ n Press the ^{str} key.

The unit will enter Temperature Input Group, and "Temperature compensation method" will appear.

	Setting Item, Function, Setting Range	Factory Default	
ſċñ	Temperature compensation method(*1)	NaCl	
nRcL	Selects Temperature compensation calculation method.		
	• $\neg B \neg L$: Temperature compensation is conducted using temperature characteristics of		
	NaCI. Select when the main salt ingredient in a sample is NaCI.		
	$\int c dE$: Temperature compensation is conducted using temperature coefficient (%/°C)		
	and a randomly selected reference temperature.		
	□FFL : No temperature compensation		
tcoE	Temperature coefficient(*1), (*2)	2.00 %/°C	
2.00	 Sets the temperature coefficient. 		
	If temperature coefficient is set to 2.00 %/°C, this value can	be used for most aqueous	
	solutions.		
	If temperature coefficient of an aqueous solution is already		
	If temperature coefficient is set to 0.00 %/°C, conductivity w	ithout temperature	
	compensation will be indicated.		
	• Setting range: -5.00 to 5.00 %/°C		
hfnd ⊡aca	Reference temperature(*1)	25.0℃	
250	• Sets the reference temperature for temperature compensation	tion.	
	• Setting range: 5.0 to 95.0°C(*3)		
dP2	Decimal point place	1 digit after decimal point	
0.0	Selects decimal point place.		
	• D : No decimal point		
	Image: Comparison of the sector of the se		
conE PF_3	Pt100 input wire type	3-wire type	
Fi []3	• Selects the input wire type of Pt100.		
	Not available for the Temperature element Pt1000. This setting item and all subsequent items are available on		
	This setting item and all subsequent items are available only when PB_{\perp} (Measured value) is selected in [Temperature Display when no temperature compensation].		
	• $P_{i}^{T} \equiv 2^{i}$: 2-wire type		
	$P \Gamma \square \beta$: 3-wire type		
cAbL	Cable length correction	0.0 m	
<i>00</i>	Sets the cable length correction value.		
	• Available only when $PT \square P$ (2-wire type) is selected in [Pt10	00 input wire type].	
	Not available for the Temperature element Pt1000.		
	• Setting range: 0.0 to 100.0 m		
chEc	Cable cross-section area	0.30 mm ²	
030	Sets the cable cross-section area.		
	• Available only when $\frac{P}{\Box} \vec{c}$ (2-wire type) is selected in [Pt100 input wire type].		
	Not available for the Temperature element Pt1000.		
	Setting range: 0.10 to 2.00 mm ²		
	Temperature input filter time constant	0.0 seconds	
FIFZ			
	 Sets Temperature input filter time constant. 		
	 Sets Temperature input filter time constant. If the value is set too large, it affects A output due to the Setting range: 0.0 to 10.0 seconds 	e delay of response.	

(*1): Not available if $\neg \mathcal{E} \mathcal{A}$ (Seawater salinity) or $\neg \mathcal{B} \mathcal{L} \mathcal{I}$ (NaCl salinity) is selected in [Measurement unit(P.21)].

(*2): Available only when f c a E is selected in [Temperature compensation method].

(*3): The placement of the decimal point follows the selection.

Character	Setting Item, Function, Setting Range	Factory Default
dFcT	Temperature inputs for moving average	20
<u> </u>	 Set the number of temperature inputs used to obtain moving average. An average temperature input value is calculated using the selected number of temperature inputs. The temperature input value is replaced every input sampling period. However, the temperature input moving average function is disabled in temperature calibration mode. Setting range: 1 to 120 	

8.4 Basic Function Group

To enter the Basic Function Group, follow the procedure below.

- ① a. E. Press the 🔘 key 3 times in Conductivity/Temperature Display Mode.
- ② Locit Press the Start key.

The unit will enter the Basic Function Group, and "Set value lock" will appear.

Character	Setting Item, Function, Setting Range	Factory Default	
Loct	Set value lock	Unlock	
	Locks the set values to prevent setting errors.		
	Selection item:		
	(Unlock): All set values can be changed.		
	$L \Box = \frac{1}{2}$ (Lock 1): None of the set values can be changed.		
	$L \Box c \overline{c}$ (Lock 2): Only A11, A12, A21 and A22 values can	-	
	$L \Box \subset \exists$ (Lock 3): All set values – except Sensor cell const		
	Measurement range, Conductivity Zero a		
	Temperature calibration value, Transmission output 1 Zero and Span		
	adjustment values, Transmission output 2 Zero and Span adjustment		
	values – can be temporarily changed. He	owever, they revert to their	
	previous value after the power is turned	off because they are not	
	saved in the non-volatile IC memory.		
	Do not change the A11, A12, A21 or A22	type. If they are changed,	
	they will affect other setting items.		
	Be sure to select Lock 3 when changing		
	software communication. (If a value set v		
	the same as the value before the setting	, the value will not be written	
	in non-volatile IC memory.)		
6746	Communication protocol	Shinko protocol	
noñL	• Selects communication protocol.		
	• Selection item: つゆうと: Shinko protocol うゅが吊: MODBUS ASCII mode		
	node node node		
	Instrument number	0	
	Sets the instrument number of each unit. (The instrument n	-	
	one when multiple instruments are connected.)	umbers should be set one by	
	Setting range: 0 to 95		
cñ5P	Communication speed	9600 bps	
95	• Selects a communication speed equal to that of the host co		
	• Selection item: 55: 9600 bps		
	<i> ∃2</i> : 19200 bps		
	<i>∃B∀</i> : 38400 bps		
575 E	Data bit/Parity	7 bits/Even	
7887	 Selects data bit and parity. 		
	Selection item:		
	Booon: 8 bits/No parity		
	Then : 7 bits/No parity		
	BEB_{n} : 8 bits/Even		
	7EBr : 7 bits/Even		
	Badd : 8 bits/Odd		
	ೌಂದರ : 7 bits/Odd		

Character	Setting Item, Function, Setting Range	Factory Default		
<u>่ แล้วก็</u>	Stop bit	1 bit		
1	Selects the stop bit.			
	Selection item: I : 1 bit Z' : 2 bits			
Frol	Transmission output 1 type	Conductivity transmission		
Ec	 Selects Transmission output 1 type. 			
	If aFF (No temperature compensation) is selected in [Temperature compensation			
	method (p.30)], and if $f \in \overline{c} P$ (Temperature transmission) is selected, then transmission			
	output 1 value will differ depending on the selection in [Temperature Display when no			
	temperature compensation (p.34)] as follows.			
	If $\Box F F \square$ (Unlit) or $\neg f \Box \square$ (Reference temperature) is selected, the value set in			
	[Reference temperature (p.30)] will be output.			
	If PB (Measured value) is selected, the measured value			
	Available when Transmission output 1 (TA option) or Transmission	nission output 2 (TA2 option)		
	is ordered.			
	• Selection item:			
	$\mathcal{E} \subset \mathbb{C}$: Conductivity transmission			
Ггні	ΓΕ δΡ: Temperature transmission	20.00 mS/am		
2000	Transmission output 1 high limitSets Transmission output 1 high limit value. (This value correged)	20.00 mS/cm		
	If Transmission output 1 high limit and low limit are set to the	. ,		
	output 1 will be fixed at 4 mA DC.	e same value, mansmission		
	Available when Transmission output 1 (TA option) or Transm	nission output 2 (TA2 option)		
	is ordered.			
	Setting range:			
	If $\mathcal{E} \subset \mathbb{R}^{-1}$ (Conductivity transmission) is selected in [Transmission output 1 type]:			
	Transmission output 1 low limit to Conductivity range high limit			
	If $\Gamma E \bar{\alpha} P$ (Temperature transmission) is selected in [Transmission output 1 type]:			
	Transmission output 1 low limit to 100.0° C			
FrL I	Transmission output 1 low limit	0.00 mS/cm		
	Sets Transmission output 1 low limit value. (This value correpo	onds to 4 mA DC output.)		
	If Transmission output 1 high limit and low limit are set to the	e same value, Transmission		
	output 1 will be fixed at 4 mA DC.			
	Available when Transmission output 1 (TA option) or Transmission output 2 (TA2 option)			
	 is ordered. Setting range: If を に (Conductivity transmission) is selected in [Transmission output 1 type]: Conductivity range low limit to Transmission output 1 high limit If 「 こ つ (Temperature transmission) is selected in [Transmission output 1 type]: 			
	0.0° to Transmission output 1 high limit	nission output i type].		
[ro2	Transmission output 2 type	Temperature transmission		
FEAP	Selects Transmission output 2 type.			
If $\Box F F \Box$ (No temperature compensation) is selected		emperature compensation		
	method (p.30)], and if $\zeta \in \overline{\alpha} \overline{\beta}$ (Temperature transmission) is selected in [reinperature co			
	output 2 value will differ depending on the selection in [Temperature Display			
	temperature compensation (p.34)] as follows.			
	If $\Box F F \square$ (Unlit) or $\neg f \Box \square$ (Reference temperature) is s	selected, the value set in		
	[Reference temperature (p.30)] will be output.			
	If PB (Measured value) is selected, the measured value			
	Available only when Transmission output 2 (TA2 option) is a	ordered.		
	Selection item:			
	$E \in \mathbb{Z}^{n}$ Conductivity transmission			
	FERP: Temperature transmission			

Character	Setting Item, Function, Setting Ran	ge	Factory Default
FrH2	Transmission output 2 high limit100.0°C		
1000	 Sets Transmission output 2 high limit value. (This value correponds to 20 mA DC output.) If Transmission output 2 high limit and low limit are set to the same value, Transmission output 2 will be fixed at 4 mA DC. Available only when Transmission output 2 (TA2 option) is ordered. Setting range: 		
	If E c (Conductivity transmission) is selected in [Transmission output 2 type]: Transmission output 2 low limit to Conductivity range high limit If 「 こう ア (Temperature transmission) is selected in [Transmission output 2 type]: Transmission output 2 low limit to 100.0°C		
[rl2	Transmission output 2 low limit		0.0°C
00	 Sets Transmission output 2 low limit value. (This value correponds to 4 mA DC output.) If Transmission output 2 high limit and low limit are set to the same value, Transmission output 2 will be fixed at 4 mA DC. Available only when Transmission output 2 (TA2 option) is ordered. Setting range: If <i>E</i> c (Conductivity transmission) is selected in [Transmission output 2 type]: Conductivity range low limit to Transmission output 2 high limit If <i>F</i> c ¬<i>P</i> (Temperature transmission) is selected in [Transmission output 2 type]: 0.0°C to Transmission output 2 high limit 		
Fre I	Transmission output 1 status when calibrating Last value HOLD		
5EFH	 Selects Transmission output 1 output status when calibrating conductivity. Available when Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. Selection item:		
5-51	PBH: Measured value (Outputs the measured value)		
	calibrating	ansmission output 1 value HOLD when libratingConductivity transmission: 0.00 mS/cm Temperature transmission: 0.0°C	
	 Sets Transmission output 1 value HOLD. Available only when 「ビデド」 (Set value HOLD) is selected in [Transmission output 1 status when calibrating]. Setting range: When ビェニニ (Conductivity transmission) is selected in [Transmission output 1 type]: Conductivity range low limit to Conductivity range high limit When ビェッデ (Temperature transmission) is selected in [Transmission output 1 type]: 0.0 to 100.0℃ 		
Fred	Transmission output 2 status when calibrating Last value HOLD		
ЬЕFH	 Iransmission output 2 status when calibrating Last value HOLD Selects Transmission output 2 output status when calibrating conductivity. Available only when Transmission output 2 (TA2 option) is ordered. Selection item: b E F H: Last value HOLD (Retains the last value before conductivity calibration, and outputs it.) b E F H: Set value HOLD (Outputs the value set in [Transmission output 2 value HOLD when calibrating].) F H H: Measured value (Outputs the measured value when calibrating conductivity.) 		

$\Gamma \leftarrow h Z$ Transmission output 2 value HOLD when calibrating Conductivity transmission: 0.00 mS/cm Temperature transmission: 0.0°C • Sets Transmission output 2 value HOLD. • Available only when $h Z \cap H$ (Set value HOLD) is selected in [Transmission output 2 status when calibrating]. • Setting range: When $E \subset \Box$ (Conductivity transmission) is selected in [Transmission output 2 type]: Conductivity range low limit to Conductivity range high limit When $E \subset \Box$ (Conductivity transmission) is selected in [Transmission output 2 type]: Conductivity range low limit to Conductivity range high limit When $E \subset \Box$ (Conductivity transmission) is selected in [Transmission output 2 type]: 0.0 to 100.0°C L1 $\Box \cap$ Auto-light function Disabled • Selects Auto-light Enabled/Disabled. • Selects items to be indicated on the Conductivity Temperature • Selection item: $\Box \cap F \in A \cap$ Ounductivity Display and Temperature Display. • Selection item: $\Box \cap F \in A \cap$ No indication Temperature Selection item: $\Box \cap F \in A \cap$ Ounductivity Display Temperature Selection item: $\Box \cap F \in A \cap$ No indication Temperature $\Box \cap F \in A \cap$ No indication Temperature $\Box \cap F \in A \cap$ No indica	Character	Setting Item, Function, Setting Range	Factory Default	
• Sets Transmission output 2 value HOLD. • Available only when $\frac{1}{2} \frac{\mathcal{E} \Gamma}{H}$ (Set value HOLD) is selected in [Transmission output 2 status when calibrating]. • Setting range: When $\mathcal{E} c$ (Conductivity transmission) is selected in [Transmission output 2 type]: Conductivity range low limit to Conductivity range high limit When $\mathcal{F} \mathcal{E} \overline{\mathcal{A}}^{P}$ (Temperature transmission) is selected in [Transmission output 2 type]: 0.0 to 100.0°C L1 \mathcal{L}^{Γ} Auto-light function Disabled $\mathcal{U}^{+}\mathcal{E}$: Enabled $\mathcal{U}^{+}\mathcal{E}$: Conductivity Display and Temperature Display. • Selects items to be indicated on the Conductivity Display and Temperature Display. • Selection item: $\overline{\mathcal{R}_{L} \perp}$ Conductivity Display $\overline{\text{Temperature Display}}$ $\mathcal{R}_{L} \perp$ Conductivity No indication $\overline{\mathcal{R}_{L} \perp}$ Conductivity No indication $\overline{\mathcal{R}_{L} \perp}$ Conductivity $\overline{\mathcal{R}_{L} \perp}$ Conductivity $\overline{\mathcal{R}_{L} \perp}$ Conductivity $\overline{\mathcal{R}_{L} \perp}$ Conductivity		Transmission output 2 value HOLD when	Conductivity transmission: 0.00 mS/cm	
• Available only when $\frac{1}{5}E^{T}H$ (Set value HOLD) is selected in [Transmission output 2 status when calibrating]. • Setting range: When $E c$ (Conductivity transmission) is selected in [Transmission output 2 type]: Conductivity range low limit to Conductivity range high limit When $F \overline{E} \overline{D}^{T}$ (Temperature transmission) is selected in [Transmission output 2 type]: 0.0 to 100.0°C L1 $\overline{L}\Gamma$ Auto-light function Disabled • Selects Auto-light Enabled/Disabled. • Selection item: $\overline{-1-1}$: Disabled $U^{+}E^{-}$: Enabled Display selection • Selection item: $\overline{-1-1}$: Ocnductivity Display and Temperature Display. • Selection item: $\overline{-1-1}$: Conductivity Display Temperature Display. • Selection item: $\overline{-1-1}$: Conductivity Display Temperature Display. • Selection item: $\overline{E L L}$ Conductivity No indication $\overline{E L D}$ No indication Temperature Selection item: $\overline{E L L}$ Conductivity No indication $\overline{E L D}$ No indication $E D $	00	calibrating	Temperature transmission: 0.0℃	
status when calibrating]. • Setting range: When $E c$ (Conductivity transmission) is selected in [Transmission output 2 type]: Conductivity range low limit to Conductivity range high limit When $f E \bar{\sigma} P$ (Temperature transmission) is selected in [Transmission output 2 type]: 0.0 to 100.0°C L1 Gf Auto-light function Disabled • Selects Auto-light function Disabled • • Selects Auto-light Enabled/Disabled. • Selection item: • $Gf \neg P$ Pisplay selection Conductivity/Temperature • Selects items to be indicated on the Conductivity Jisplay and Temperature Display. • • Selection item: • Selection item: • Selection item: • Conductivity Display metature Display. • Selection item: • Selection item: • Selection item: • Conductivity Display Temperature Display. • Selection item: • Conductivity No indication • Selection item: • Selection item:				
• Setting range: When $\mathcal{E}_{\mathcal{L}}$ (Conductivity transmission) is selected in [Transmission output 2 type]: Conductivity range low limit to Conductivity range high limit When $\mathcal{E}_{\mathcal{D}}\mathcal{P}$ (Temperature transmission) is selected in [Transmission output 2 type]: 0.0 to 100.0°C L1 $\mathcal{D}\mathcal{F}$ Auto-light function Disabled • Selects Auto-light function Disabled • Selection item: $\Box = \Box = \Box = \Box$ • Selection item: $\Box = \Box = \Box = \Box$ • Selects items to be indicated on the Conductivity Display and Temperature Display. • Selection item: Selection item: • Selection item: $\Box = \Box = \Box$ • Selection item: Conductivity Display metature Display. • Selection item: Selection item: • Selection item: $\Box = \Box = \Box$		• Available only when $\neg \mathcal{E} \mathcal{F} \mathcal{H}$ (Set value HOLD) is selected in [Transmission output 2		
When $E c$ (Conductivity transmission) is selected in [Transmission output 2 type]: Conductivity range low limit to Conductivity range high limit When $\int E \overline{\alpha} P$ (Temperature transmission) is selected in [Transmission output 2 type]: 0.0 to 100.0°C L1 $G \Gamma$ Auto-light function Disabled • Selects Auto-light Enabled/Disabled. • Selection item: • Selection item: Image: Conductivity Display and Temperature $B L L$ • Selection item: • Selection item: Eccil Conductivity Display and Temperature Display. • Selection item: • Selection item: $B L L$ Conductivity No indication $R L L$ Conductivity Display Temperature Display. • Selection item: • Selection item: $B L L$ Conductivity No indication $T = \overline{\alpha} p \overline{\alpha} E$ No indication $T = \overline{\alpha} p \overline{\alpha} $		01		
Conductivity range low limit to Conductivity range high limitWhen $\Gamma E \overline{nP}$ (Temperature transmission) is selected in [Transmission output 2 type]: 0.0 to 100.0°CLI $\overline{D}\Gamma$ Auto-light functionDisabledSelects Auto-light Enabled/Disabled. Selection item: $\Box \Box \Box \Box$: DisabledSelection item: $\Box \Box \Box \Box$: EnabledDisplay selection $\mathcal{B}L L \Box$ Selects items to be indicated on the Conductivity Display and Temperature Display. Selection item:Selection item: $\Box \Box \Box \Box$ $\mathcal{B}L L \Box$ Conductivity DisplayTemperature Display $\mathcal{B}L L \Box$ Conductivity No indication $\Gamma \subseteq \overline{nP}$ No indication $\Box \Box \Box \Box$ Ti \overline{nE} Indication time $\Box \Box \Box \Box$ $\mathcal{O}0.00$ Sets the indication time of the displays from no key operation until displays go off. Displays remain lit when set to 00.00.				
When $\Gamma E \bar{n} \bar{P}$ (Temperature transmission) is selected in [Transmission output 2 type]: 0.0 to 100.0°CL1 $\bar{D}\Gamma$ Auto-light functionDisabledDisabled/DisabledSelects Auto-light Enabled/DisabledDisabled $U^+ E^$: EnabledConductivity/Temperature $U^+ E^$: EnabledConductivity Display and Temperature Display. $V = E_{C$				
0.0 to 100.0°C Disabled L1 GF Auto-light function Disabled • Selects Auto-light Enabled/Disabled. • Selection item: • Selection item: Disabled $\Box \neg \neg \Box$ Disabled $\Box \neg \neg \Box$ Disabled $\Box \neg \Box$ Disabled $\Box \neg \Box$ Disabled $\Box \neg \Box$ Disabled $\Box \neg \Box$ Conductivity Display and Temperature Display. • Selects items to be indicated on the Conductivity Display and Temperature Display. • Selection item: • Selection item: $\Box \Box$ Conductivity Display Temperature Display. • Selection item: • Conductivity Temperature Display $\Box \Box$ Conductivity Temperature $\Box \Box$ No indication Temperature $\Box \Box$ No indication No indication $\Box \Box$ No indication No indication $\Box \Box$ No indication time 00.00 • Sets the indication time of the displays from no key operation until displays go off. Displays remain lit when set to 00.00.		, _ 0 ,	0 0	
L1 Dr Auto-light function Disabled Selects Auto-light Enabled/Disabled. Selects Auto-light Enabled/Disabled. Selection item: Display selection item: Display selection Conductivity/Temperature Selects items to be indicated on the Conductivity Display and Temperature Display. Selection item: Selection item: Conductivity Display Temperature Display Selection item: Conductivity No indication RLL Conductivity Temperature Display Selection item: Conductivity No indication Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Sel		. , , , , , , , , , , , , , , , , , , ,	s selected in [manshission output z type].	
• Selects Auto-light Enabled/Disabled. • Selection item: • Jisplay selection $U' + E$ • Selects items to be indicated on the Conductivity/Temperature • Selects items to be indicated on the Conductivity Display and Temperature Display. • Selection item: • Conductivity Display • Conductivity • Conductivity • Conductivity • Conductivity • Selection • E c : Conductivity • No indication • E c : Conductivity • No indication • E c : No indication • E c : No indication • D : No indication time • O : 00.00 • Sets the indication time of t	1155		Disabled	
• Selection item: $\Box \neg E$: Disabled $U \neg E$: Enabled $Display selection$ Conductivity/Temperature • Selects items to be indicated on the Conductivity Display and Temperature Display. • Selection item: • Conductivity Display • Conductivity • No indication • Conductivity • No indication • Conductivity • No indication <td< th=""><th></th><th>-</th><th>Disabled</th></td<>		-	Disabled	
Image: Selection Conductivity/Temperature $d! \neg P$ Display selection Conductivity Display and Temperature Display. • Selects items to be indicated on the Conductivity Display and Temperature Display. • Selection item: • Selection item: • Conductivity Display Temperature Display • Selection item: • Conductivity Temperature Display • Selection item: • Conductivity Temperature • Selection item: • Conductivity Temperature • Selection item: • Conductivity Temperature • Selection item: • Conductivity No indication • Selection item: • Oo.00 • Sets the indication time of the displays from no key operation until displays go off. • Displays remain lit when set to 00.00. • Oo.00 • Oo.00	·			
d1 $\subseteq P$ Display selectionConductivity/Temperature* Selects items to be indicated on the Conductivity Display and Temperature Display.• Selection item: $\boxed{1 \ E \ Conductivity Display}$ $\boxed{1 \ E \ Conductivity}$ $\boxed{1 \ E \ E \ E \ Conductivity}$ $\boxed{1 \ E \ E \ E \ Conductivity}$ $1 \ E \ E \ E \ E \ E \ E \ E \ E \ E \ $				
• Selects items to be indicated on the Conductivity Display and Temperature Display. • Selection item: • Sets items to be indication • Sets the indication time of the displays from no key operation until displays go off. • Displays remain lit when set to 00.00.		<i>出与E</i> □:Enabled		
Selects items to be indicated on the Conductivity Display and Temperature Display. • Selection item: Selection item: Selection item: Selection item: <i>RLL</i> Conductivity Display Temperature Display <i>RLL</i> Conductivity Temperature <i>E_C</i> Conductivity Temperature <i>E_C</i> Conductivity No indication Temperature <i>D_CO</i> Indication time 00.00 • Sets the indication time of the displays from no key operation until displays go off. Displays remain lit when set to 00.00.	di 5P	Display selection	Conductivity/Temperature	
• Selection item: • Conductivity Display Temperature Display RLL Conductivity Temperature $E_{\mathcal{L}}$ Conductivity Temperature $E_{\mathcal{L}}$ Conductivity No indication $F \in \overline{AP}$ No indication Temperature $\overline{C} = \overline{AP}$ No indication Temperature $\overline{C} = \overline{AP}$ No indication No indication $\overline{C} = \overline{AP}$ No indication time 00.00 $\overline{C} = \overline{AP}$ Sets the indication time of the displays from no key operation until displays go off. Displays remain lit when set to 00.00. No No			vity Display and Temperature Display.	
$\exists L L$ Conductivity Temperature $\exists c$ Conductivity No indication $\exists c = 0$ Conductivity No indication $\exists c = 0$ No indication Temperature $\neg c = 0$ No indication No indication $\neg c = 0$ No indication time 00.00 $\neg c = 0$ Sets the indication time of the displays from no key operation until displays go off. Displays remain lit when set to 00.00. No		Selection item:		
$E \subseteq$ Conductivity No indication $\Gamma \in \overline{P}$ No indication Temperature $\overline{D \oplus D} \in$ No indication No indication $\Gamma \cap \overline{D} \in$ No indication time 00.00 $\circ \overline{D} \cap \overline{D}$ • Sets the indication time of the displays from no key operation until displays go off. Displays remain lit when set to 00.00. • Sets in the indication is the indic			Temperature Display	
Indication time 00.00 Indication time 00.00 Indication time of the displays from no key operation until displays go off. Displays remain lit when set to 00.00.				
Indication No indication Indication time 00.00 Indication time of the displays from no key operation until displays go off. Displays remain lit when set to 00.00.			No indication	
Indication time 00.00 Indication time 00.00 Indication time of the displays from no key operation until displays go off. Displays remain lit when set to 00.00.			Temperature	
• Sets the indication time of the displays from no key operation until displays go off. Displays remain lit when set to 00.00.		nenE No indication	No indication	
• Sets the indication time of the displays from no key operation until displays go off. Displays remain lit when set to 00.00.				
Displays remain lit when set to 00.00.	EL AE	Indication time	00.00	
	0000		no key operation until displays go off.	
If any errors occur or any key is pressed while in unlit status, the display will light up.				
• Not available if $\neg \varphi \neg \xi$ (No indication) is selected in [Display selection].			ected in [Display selection].	
Setting range:				
00.00 (Remains lit)				
	E (0	00.01 to 60.00 (Minutes.Seconds)		
Description Temperature Display when no temperature Unlit Description Compensation Compensation			Unlit	
		-	ratura Display when a EE (No	
temperature compensation) is selected in [Temperature compensation method].		• Selects an item to be indicated on the Temperature Display when $\Box F \vdash$ (No		
The placement of the decimal point for the reference temperature follows the selection.		,		
• Available only when σ^{FF} (No temperature compensation) is selected in [Temperature				
compensation method].				
Selection item:				
PB Measured value				
ーデー d □: Reference temperature				

Character	Setting Item, Function, Setting Range	Factory Default		
A IoF	A1 output allocation	A11 type		
811	Selects A1 output allocation.			
	For A1 output, A11 type, A12 type, A21 type and/or A22 type	e can be allocated.		
	Output is OR output.			
	 Not available if Transmission output 2 (TA2 option) is ordered 	ed.		
	Selection item:			
	<i>用 ↓ I</i> □ : A11 type			
	<i>☐] 2</i> : A12 type			
	<i>R2</i> /□ : A21 type			
	<i>R22</i> : A22 type <i>B (B)</i> : A11 A12 types			
	8 /8L : A11, A12 types			
	828L : A21, A22 types			
	R IR2 : A11, A21 types			
	R2R2 : A12, A22 types			
82oF	RLL : A11, A12, A21, A22 types A2 output allocation	A21 tupo		
82 1	Selects A2 output allocation.	A21 type		
	For A2 output, A11 type, A12 type, A21 type and/or A22 type	a can be allocated		
		e can be anocated.		
	Output is OR output. • Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option)			
	is ordered.			
	 Selection items are the same as those of A1 output allocation. (p.35) 			
oon l	Output ON time when A1 output ON	0 seconds		
<i>D</i>	Sets Output ON time when A1 output is ON.			
	If Output ON time and OFF time are set, A1 output can be turned ON/OFF in a			
	configured cycle when A1 output is ON. (Fig. 8.4-1)			
	Not available if Transmission output 2 (TA2 option) is ordered.			
	• Setting range: 0 to 9999 seconds			
	Timing chart (Output ON time and OFF time when A	A1 output is ON)		
	ON			
	Actual A1 output OFF			
		ON time is turned		
	A1 output to which ON	OFF, caused by the		
	ON time and OFF	turning OFF.		
	time are set. OFF			
	ON OFF ON OFF			
	time time time time	e time		
	(Fig. 8.4-1)			
	(Tig. 0. 4- 1)			

Character	Setting Item, Function, Setting Range	Factory Default	
00F 1	Output OFF time when A1 output ON	0 seconds	
	Sets Output OFF time when A1 output is ON.		
	If Output ON time and OFF time are set, A1 output can be t	urned ON/OFF in a	
	configured cycle when A1 output is ON. (Fig. 8.4-1) (p.35)		
	• Not available if Transmission output 2 (TA2 option) is order	ed.	
	Setting range: 0 to 9999 seconds		
oond	Output ON time when A2 output ON	0 seconds	
0	Sets Output ON time when A2 output is ON.		
	If Output ON time and OFF time are set, A2 output can be t	urned ON/OFF in a	
	configured cycle when A2 output is ON. (Fig. 8.4-1) (p.35)		
	• Not available if Transmission output 1 (TA option) or Transm	nission output 2 (TA2 option)	
	is ordered.	,	
	Setting range: 0 to 9999 seconds		
ooF2	Output OFF time when A2 output ON	0 seconds	
D	Sets Output OFF time when A2 output is ON.		
	If Output ON time and OFF time are set, A2 output can be t	urned ON/OFF in a	
	configured cycle when A2 output is ON. (Fig. 8.4-1) (p.35)		
	• Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option)		
	is ordered.		
	Setting range: 0 to 9999 seconds		
RIE	A1 conductivity input error alarm A	No action	
	• Selects an A type in order to assess A1 conductivity inp		
	Not available if Transmission output 2 (TA2 option) is ordered	ed.	
	Selection item Inclusion		
	<i>R I Z</i> : A12 type		
	<i>R2</i> /□ : A21 type		
	<i>B22</i> ⊡ : A22 type		
828	A2 conductivity input error alarm A	No action	
	• Selects A type in order to assess A2 conductivity input	error alarm.	
	• Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option)		
	is ordered.		
	Selection item		
	<i>R I I</i> .∷ : A11 type <i>R I 2</i> : A12 type		
	<i>R2 I</i> □ : A12 type		
	$\overrightarrow{R22}$: A21 type		

Character	Setting Item, Function, Setting Range	Factory Default		
R IEo	A1 conductivity input error alarm band	0.00 mS/cm		
000	when A output ON			
	• Sets the band to assess A1 conductivity input error alarm when $A \square \square$ output is ON.			
	Refer to 'Conductivity Input Error Alarm' on p.38.			
	Not available if Transmission output 2 (TA2 option) is ordered	ed.		
	Setting range:			
	Conductivity range low limit to Conductivity range high limit			
	When set to 0.0 or 0.00, Conductivity input error alarm is dis			
R Iof	A1 conductivity input error alarm time	0 seconds		
	when A output ON			
	 Sets time to assess A1 conductivity input error alarm when 	$A \square \square$ output is ON.		
	Refer to 'Conductivity Input Error Alarm' on p.38.			
	Not available if Transmission output 2 (TA2 option) is ordered	ed.		
	Setting range:			
	0 to 9999 seconds or minutes (Time unit follows the selection in [Conductivity input			
	error alarm time unit].)			
<u> </u>	When set to 0, Conductivity input error alarm is disabled.			
8 1Ec	A1 conductivity input error alarm band	0.00 mS/cm		
000	when A output OFF			
	• Sets the band to assess A1 conductivity input error alarm when A output is OFF.			
	Refer to 'Conductivity Input Error Alarm' on p.38. • Not available if Transmission output 2 (TA2 option) is ordered.			
	Setting range:			
	Conductivity range low limit to Conductivity range high limit	t		
	When set to 0.0 or 0.00, Conductivity input error alarm is disabled.			
R IcT	A1 conductivity input error alarm time	0 seconds		
	when $A \square$ output OFF			
·iii	 Sets time to assess A1 conductivity input error alarm when 	A output is OFF.		
	Refer to 'Conductivity Input Error Alarm' on p.38.			
	Not available if Transmission output 2 (TA2 option) is ordered.			
	• Setting range:			
	0 to 9999 seconds or minutes (Time unit follows the select	ion in [Conductivity input		
	error alarm time unit].)			
	When set to 0, Conductivity input error alarm is disabled.			
82Eo	A2 conductivity input error alarm band	0.00 mS/cm		
000	when A output ON			
	• Sets the band to assess A2 conductivity input error alarm when A output is ON.			
	Refer to 'Conductivity Input Error Alarm' on p.38.			
	• Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option)			
	is ordered.			
	Setting range:			
	Conductivity range low limit to Conductivity range high limit			
	When set to 0.0 or 0.00, Conductivity input error alarm is disabled.			

Character	Setting Item, Function, Setting Range	Factory Default			
8205	A2 conductivity input error alarm time	0 seconds			
	when A output ON				
	• Sets time to assess A2 conductivity input error alarm when A output is ON.				
	Refer to 'Conductivity Input Error Alarm' on p.38.				
	Not available if Transmission output 1 (TA option) or Transr	mission output 2 (TA2 option)			
	is ordered.				
	Setting range:				
	0 to 9999 seconds or minutes (Time unit follows the selection in [Conductivity input error alarm time unit].)				
	When set to 0, Conductivity input error alarm is disabled.				
RZEc	A2 conductivity input error alarm band	0.00 mS/cm			
	when A output OFF				
	Sets the band to assess A2 conductivity input error alarm w	when A \Box output is OFF.			
	Refer to 'Conductivity Input Error Alarm' on p.38. • Not available if Transmission output 1 (TA option) or Transmission output 2 (TA2 option)				
	 is ordered. Setting range: Conductivity range low limit to Conductivity range high limit 				
07 C	When set to 0.0 or 0.00, Conductivity input error alarm is disabled.				
82cC	A2 conductivity input error alarm time	0 seconds			
<u> </u>	when A output OFF				
	• Sets time to assess A2 conductivity input error alarm when	$A \sqcup \sqcup$ output is OFF.			
	Refer to 'Conductivity Input Error Alarm' on p.38.	$(\mathbf{T} \mathbf{A} \mathbf{C})$			
	 Not available if Transmission output 1 (TA option) or Transr is ordered. 	nission output 2 (TA2 option)			
	 Setting range: 0 to 9999 seconds or minutes (Time unit follows the selection in [Conductivity input error alarm time unit].) When set to 0, Conductivity input error alarm is disabled. 				
ñ_5	Conductivity input error alarm time unit	Second(s)			
5Ec	Selects conductivity input error alarm time unit.				
••= •= •	Selects conductivity input error alarm time unit. Selection item:				
	$\neg E \subset \square$: Second(s)				
	$\vec{n} \cdot \vec{n}$: Minute(s)				

Conductivity Input Error Alarm

Conductivity input error alarm is used for detecting actuator trouble.

Even if Conductivity input error alarm time has elapsed – if conductivity input does not become higher than conductivity input error alarm band – the instrument assumes that actuator trouble has occurred, and sets Status flag 2.

In Serial communication, status can be read by reading Status flag 2 (A1, A2 conductivity input error alarm output flag bit).

Conductivity input error alarm is disabled during Conductivity Zero or Span adjustment.

Conductivity input error alarm is enabled only when \mathcal{E}_{c} , \mathcal{L} (Conductivity input low limit action) or \mathcal{E}_{c} , \mathcal{H} (Conductivity input high limit action) is selected in [A11, A12, A21, A22 type (pp.22, 23)].

9. Calibration

Conductivity calibration mode, Temperature calibration mode, and Transmission output 1 and 2 adjustment modes are described below.

9.1 Conductivity Calibration Mode

Deterioration of the 4-electrode Conductivity Sensor might cause the cell constant to change. To correct the changed cell constant, conductivity calibration must be performed. Calibrate Conductivity Zero adjustment first, followed by Conductivity Span adjustment. During conductivity calibration, A action is forced OFF.

However, if $L \Box c \downarrow (Lock 1)$, $L \Box c c \downarrow (Lock 2)$ or $L \Box c c \downarrow (Lock 3)$ is selected in [Set value lock (p.31)], the unit cannot move to Conductivity calibration mode.

The following outlines the procedure for conductivity calibration.

- When selecting bEFH (Last value HOLD) in [Transmission output 1 status when calibrating (p.33)] or [Transmission output 2 status when calibrating (p.33)], select it while the 4-electrode Conductivity Sensor is being immersed in the solution currently measured.
- 2 Do not immerse the 4-electrode Conductivity Sensor in the standard solution.
- ^③ Press and hold the 🖂 key and 💿 key (in that order) together for 3 seconds in Conductivity/ Temperature Display Mode.

The unit enters Conductivity calibration Zero adjustment mode, and indicates the following.

Display	Indication	
Conductivity Display	$B \exists \Box \Xi$ and conductivity are indicated alternately.	
Temperature Display	Conductivity Zero adjustment value	

④ Set the Conductivity Zero adjustment value with the △ or ▽ key so that the conductivity becomes 0. If conductivity is 0, this adjustment is not necessary.

Setting range of the Conductivity Zero adjustment value differs depending on the measurement range. See (Table 9.1-1.). (p. 40)

However, it is effective within the measurement range regardless of the Conductivity Zero adjustment value.

(Table 9.1-1)

Measurement Range		Conductivity Zero Adjustment Value Setting Range	
	0.00 to 20.00 mS/cm	-2.00 to 2.00 mS/cm	
	0.0 to 200.0 mS/cm	-20.0 to 20.0 mS/cm	
	0.0 to 500.0 mS/cm	-50.0 to 50.0 mS/cm	
	0 to 500 mS/cm	-50 to 50 mS/cm	
	0.000 to 2.000 mS/cm	-0.200 to 0.200 mS/cm	
	0.000 to 5.000 mS/cm	-0.500 to 0.500 mS/cm	
	0.00 to 50.00 mS/cm	-5.00 to 5.00 mS/cm	
	0 to 2000 µS/cm	-200 to 200 µS/cm	
	0 to 5000 µS/cm	-500 to 500 µS/cm	
0.1	0.000 to 2.000 S/m	-0.200 to 0.200 S/m	
Cell constant	0.00 to 20.00 S/m	-2.00 to 2.00 S/m	
1.0/cm	0.00 to 50.00 S/m	-5.00 to 5.00 S/m	
1.0/011	0.0 to 50.0 S/m	-5.0 to 5.0 S/m	
	0 to 2000 mS/m	-200 to 200 mS/m	
	0.000 to 5.000 S/m	-0.500 to 0.500 S/m	
	0.0 to 200.0 mS/m	-20.0 to 20.0 mS/m	
	0.0 to 500.0 mS/m	-50.0 to 50.0 mS/m	
	0.0 to 20.0 g/L	-2.0 to 2.0 g/L	
	0 to 200 g/L	-20 to 20 g/L	
	0 to 500 g/L	-50 to 50 g/L	
	0 to 2000 mg/L	-200 to 200 mg/L	
	0 to 5000 mg/L	-500 to 500 mg/L	
	0.0 to 200.0 mS/cm	-20.0 to 20.0 mS/cm	
	0.0 to 500.0 mS/cm	-50.0 to 50.0 mS/cm	
	0 to 2000 mS/cm	-200 to 200 mS/cm	
Cell	0.00 to 20.00 S/m	-2.00 to 2.00 S/m	
constant	0.00 to 50.00 S/m	-5.00 to 5.00 S/m	
10.0/cm	0.0 to 200.0 S/m	-20.0 to 20.0 S/m	
	0 to 200 g/L	-20 to 20 g/L	
	0 to 500 g/L	-50 to 50 g/L	
	0 to 2000 g/L	-200 to 200 g/L	
Seawater salinity 0.00 to 4.00%		-0.40 to 0.40%	
NaCl salinity 0.00 to 20.00%		-2.00 to 2.00%	

 \bigcirc Press the $\frac{\text{BET}}{\text{RESET}}$ key.

Conductivity Zero adjustment value will be registered, and the unit will move to Conductivity calibration Span adjustment mode.

The following is indicated in Conductivity calibration Span adjustment mode.

Display	Indication	
Conductivity Display	$B a \Box \neg$ and conductivity are indicated alternately.	
Temperature Display	Conductivity Span adjustment value	

⁶ Immerse the 4-electrode Conductivity Sensor in the standard solution.

 Set the Conductivity Span adjustment value with the or key, checking the conductivity. Conductivity multiplied by the Span adjustment value is displayed.
 Conductivity Span adjustment value: 0.700 to 1.300

8 Press the street key.

Conductivity Span adjustment value will be registered, and the unit will revert to Conductivity/ Temperature Display Mode.

9.2 Temperature Calibration Mode

To calibrate a temperature, set a temperature calibration value.

If $\Box F F \square$ (No temperature compensation) is selected in [Temperature compensation method (p.30)], Temperature calibration mode is not available.

The unit cannot enter Temperature calibration mode in the following cases: • When $\angle \Box \Box \dashv (Lock 1), \angle \Box \Box \dashv (Lock 2)$ or $\angle \Box \Box \dashv (Lock 3)$ is selected in [Set value lock (p.31)].

When a sensor cannot be set at the exact location where measurement is desired, the resulting measured temperature may deviate from the temperature in the desired location. In this case, the desired temperature can be set for the desired location by setting a temperature calibration value. However, it is effective within the input rated range regardless of the temperature calibration value. Temperature after calibration = Current temperature + (Temperature calibration value) (e.g.) When current temperature is 23.5° C,

If temperature calibration value is set to 1.5° C: $23.5 + (1.5) = 25.0^{\circ}$ C If temperature calibration value is set to -1.5° C: $23.5 + (-1.5) = 22.0^{\circ}$ C

The following outlines the procedure for temperature calibration.

(1) Press and hold the 🖾 key and 🔘 key (in that order) together for 3 seconds in Conductivity/ Temperature Display Mode.

The unit proceeds to Temperature calibration mode, and indicates the following.

Display	Indication	
Conductivity Display	hall and temperature are indicated alternately.	
Temperature Display	Temperature calibration value	

② Set a temperature calibration value with the △ or ▽ key, checking temperature. Setting range: -10.0 to 10.0°C

③ Press the 📰 key.

Temperature calibration is complete, and the unit reverts to Conductivity/Temperature Display Mode.

9.3 Transmission Output 1 Adjustment Mode

Fine adjustment of Transmission output 1 is performed. WIL-102-ECH is adjusted at the factory, however, differences may occur between the indication value of the connected equipment (recorders, etc.) and output value of this instrument. In this case, perform Transmission output 1 Zero and Span adjustments. Transmission output 1 adjustment mode is available when Transmission output 1 (TA option) or

Transmission output 2 (TA2 option) is ordered.

The unit cannot enter Transmission output 1 Zero adjustment mode in the following cases:

- During Conductivity Zero or Span adjustment, or temperature calibration
- When $L \Box c \downarrow$ (Lock 1), $L \Box c c \downarrow$ (Lock 2) or $L \Box c \downarrow$ (Lock 3) is selected in [Set value lock (p.31)]

The following outlines the procedure for Transmission output 1 adjustment.

 Press and hold the △ key and [™] key (in that order) together for 3 seconds in Conductivity/Temperature Display Mode.

The unit enters Transmission output 1 Zero adjustment mode, and indicates the following.

Display	Indication
Conductivity Display	RJE I
Temperature Display	Transmission output 1 Zero adjustment value

⁽²⁾ Set a Transmission output 1 Zero adjustment value with the arr value indicated on the connected equipment (recorders, etc.). Setting range: ±5.00% of Transmission output 1 span

③ Press the \mathbb{H} key.

The unit enters Transmission output 1 Span adjustment mode, and indicates the following.

Display	Indication	
Conductivity Display	RJ5 I	
Temperature Display	Transmission output 1 Span adjustment value	

- ④ Set a Transmission output 1 Span adjustment value with the △ or ▽ key, while viewing the value indicated on the connected equipment (recorders, etc.). Setting range: ±5.00% of Transmission output 1 span
- $^{(5)}$ Press the \square key.

The unit reverts to Transmission output 1 Zero adjustment mode. Repeat steps 2 to 5 if necessary.

6 To finish Transmission output 1 adjustment, press the 🔤 key in Transmission output 1 Span adjustment mode.

The unit reverts to Conductivity/Temperature Display Mode.

9.4 Transmission Output 2 Adjustment Mode

Fine adjustment of Transmission output 2 is performed.

WIL-102-ECH is adjusted at the factory, however, differences may occur between the indication value of the connected equipment (recorders, etc.) and output value of this instrument.

In this case, perform Transmission output 2 Zero and Span adjustments.

Transmission output 2 adjustment mode is available only when Transmission output 2 (TA2 option) is ordered.

The unit cannot enter Transmission output 2 Zero adjustment mode in the following cases:

- During Conductivity Zero or Span adjustment, or temperature calibration
- When $L \Box c \downarrow$ (Lock 1), $L \Box c c \downarrow$ (Lock 2) or $L \Box c J$ (Lock 3) is selected in [Set value lock (p.31)]

The following outlines the procedure for Transmission output 2 adjustment.

The unit enters Transmission output 2 Zero adjustment mode, and indicates the following.

Display	Indication
Conductivity Display	RJEZ
Temperature Display	Transmission output 2 Zero adjustment value

② Set a Transmission output 2 Zero adjustment value with the △ or ▽ key, while viewing the value indicated on the connected equipment (recorders, etc.). Setting range: ±5.00% of Transmission output 2 span

③ Press the \mathbb{H} key.

The unit enters Transmission output 2 Span adjustment mode, and indicates the following.

Display	Indication	
Conductivity Display	8342	
Temperature Display	Transmission output 2 Span adjustment value	

- ④ Set a Transmission output 2 Span adjustment value with the △ or ▽ key, while viewing the value indicated on the connected equipment (recorders, etc.).
 Setting range: ±5.00% of Transmission output 2 span
- $^{(5)}$ Press the \square key.

The unit reverts to Transmission output 2 Zero adjustment mode. Repeat steps 2 to 5 if necessary.

⁽⁶⁾ To finish Transmission output 2 adjustment, press the sev in Transmission output 2 Span adjustment mode.

The unit reverts to Conductivity/Temperature Display Mode.

10. Measurement

10.1 Starting Measurement

After mounting to the control panel, wiring, setup and calibration are complete, turn the power to the instrument ON.

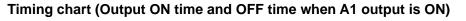
For approximately 4 seconds after the power is switched ON, the input characters are indicated on the Conductivity Display and Temperature Display. See (Table 10.1-1).

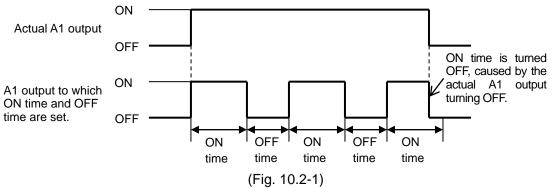
(Table	10.1-1)
liance	

Display	Character	Measurement Unit	
Conductivity Display	conð	Conductivity (mS/cm, μ S/cm)	
	5/	Conductivity (S/m, mS/m)	
	5 <i>E R</i>	Seawater salinity (%)	
	5 <i>8LT</i>	NaCl salinity (%)	
	[dh]]	TDS conversion (g/L, mg/L)	
Display	Character	Input Temperature Specification (*)	Selection Item in [Pt100 Input Wire Type] (p.30)
Temperature Display	PF[]2	DI400	F'I Z': 2-wire type
	PF 3	Pt100	P/ ∃: 3-wire type
	PF 10	Pt1000	

(*) This input temperature specification was specified at the time of ordering.

During this time, all outputs are in OFF status, and the LED indicators except PWR Indicator are unlit. Measurement will then start, indicating the item selected in [Display selection (p.34)].


10.2 A Output


When $\mathcal{E}_{\mathcal{A}}\mathcal{L}$ (Conductivity input low limit action), $\mathcal{E}_{\mathcal{A}}\mathcal{H}$ (Conductivity input high limit action), $\mathcal{E}_{\mathcal{A}}\mathcal{H}\mathcal{L}$ (Temperature input low limit action), or $\mathcal{E}_{\mathcal{A}}\mathcal{H}\mathcal{H}$ (Temperature input high limit action) is selected in [A11, A12, A21, A22 type (pp. 22, 23)], the A output is turned ON if the measured value exceeds or drops below the A value.

When $\mathcal{E}_{\mathcal{C}}HL$ (Conductivity input High/Low limits independent action), $\mathcal{F}_{\mathcal{O}}HL$ (Temperature input High/Low limits independent action) is selected in [A11, A12, A21, A22 type (pp. 22, 23)], the A output is turned ON if the measured value exceeds the A High/Low limits independent action upper side span, or drops below the lower side span.

A1 or A2 output is turned ON depending on the selection in [A1/A2 output allocation (p.35)] and in [Output ON time/OFF time when A1/A2 output is ON (pp. 35, 36)].

If Output ON time and OFF time are set, A1 or A2 output can be turned ON/OFF in a configured cycle when A1 or A2 output is ON. (Fig. 10.2-1)

A output status can be read by reading Status flag 1 (A11, A12, A21, A22 output flag bit) in Serial communication.

A output status, when input errors occur, differs depending on the selection in [A output when input errors occur (p.29)].

- If $\Box \not \vdash \not \vdash \Box$ (Disabled) is selected, A \Box output and A \Box output status will be turned OFF when input errors occur.
- If prime (Enabled) is selected, A output and A output status will be maintained when input errors occur.

10.3 Conductivity Input Error Alarm

Conductivity input error alarm is used for detecting actuator trouble.

Even if conductivity input error alarm time (pp. 37, 38) has elapsed, and if conductivity input does not become higher than conductivity input error alarm band (pp. 37, 38), the unit assumes that actuator trouble has occurred, and writes Status flag 2.

In Serial communication, status can be read by reading Status flag 2 (A1, A2 conductivity input error alarm output flag bit).

Conductivity input error alarm is disabled during Conductivity Zero or Span adjustment.

Conductivity input error alarm is enabled only when $\mathcal{E}_{\mathcal{L}}\mathcal{L}$ (Conductivity input low limit action) or $\mathcal{E}_{\mathcal{L}}\mathcal{H}$ (Conductivity input high limit action) is selected in [A11, A12, A21, A22 type (pp.22, 23)].

10.4 Error Output

If $\mathcal{E} \subset \mathcal{A}^{\mathcal{F}}$ (Error output) is selected in [A11, A12, A21, A22 type (pp. 22, 23)], the A1 or A2 output will be turned ON when error type is "Error". See (Table 10.6-1).

10.5 Fail Output

If FRL = (Fail output) is selected in [A11, A12, A21, A22 type (pp. 22, 23)], the A1 or A2 output will be turned ON when error type is "Fail". See (Table 10.6-1).

10.6 Error Code during Measurement

For Temperature sensor error or outside temperature compensation range during measurement, their corresponding error codes flash on the Temperature Display as shown below in (Table 10.6-1).

(10000000						
Error Code	Error Type	Error Contents	Description	Occurrence		
E-01	Fail	Temperature sensor burnout	Temperature sensor lead wire is burnt out.			
8-82	Fail	Temperature sensor short-circuited	Temperature sensor lead wire is short-circuited.	When measuring		
8-83	Error	Outside temperature compensation range	Measured temperature has exceeded 110.0°C.	or calibrating		
E-04	Error	Outside temperature compensation range	Measured temperature is less than 0.0℃.			

(Table 10.6-1)

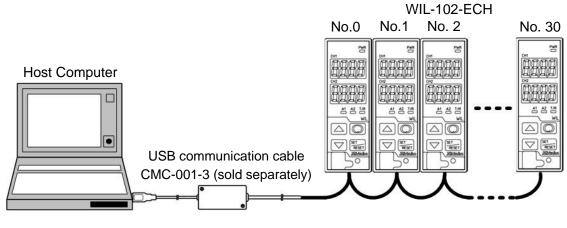
10.7 Transmission Output 1 and 2

Converting conductivity or temperature to analog signal every input sampling period, outputs in current. (Factory default: Transmission output 1: Conductivity, Transmission output 2: Temperature)

If $\Box \not \vdash \not \vdash \Box$ (No temperature compensation) is selected in [Temperature compensation method (p.30)], and if $\not \vdash \overleftarrow{\Box} \not \vdash \overleftarrow{\Box} \not \vdash$ (Temperature transmission) is selected in [Transmission output 1 or 2 type (p.32)], Transmission output 1 or 2 value differs depending on the selection in [Temperature Display when no temperature compensation (p.34)].

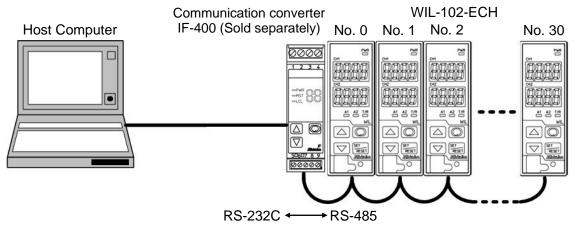
- If ロケケロ (Unlit) or 'ヮ, ロロ (Reference temperature) is selected, the value set in [Reference temperature (p.30)] will be output.
- If PB (Measured value) is selected, the measured value will be output.

If Transmission output 1 high limit and low limit are set to the same value, Transmission output 1 will be fixed at 4 mA DC.


If Transmission output 2 high limit and low limit are set to the same value, Transmission output 2 will be fixed at 4 mA DC.

Resolution	12000		
Current	4 to 20 mA DC (Load resistance: Max 550 Ω)		
Output accuracy	Within $\pm 0.3\%$ of Transmission output 1 or 2 span		

11. Communication


11.1 System Configuration Example

When Using USB Communication Cable CMC-001-3 (sold separately)

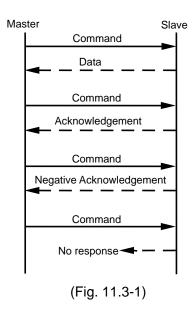
(Fig. 11.1-1)

When Using Communication Converter IF-400 (sold separately)

(Fig. 11.1-2)

11.2 Setting Method of the Conductivity Meter

Communication parameters can be set in the Basic Function Group. To enter the Basic Function Group, follow the procedure below.


- (1) af.E.r Press the \square key 3 times in Conductivity/Temperature Display Mode.
- $2 \subset \overline{n} L$ Press the **Example** key twice. "Communication protocol" will appear.
- 3 Set each item. (Use the Δ or ∇ key for settings, and register the selection/value with the \mathbb{R}

key.)					
Character	Setting Item, Function, Setting Range	Factory Default			
c742	Communication protocol	Shinko protocol			
noñL	Selects communication protocol.				
	Selection item:				
	neni : Shinko protocol				
	nadR : MODBUS ASCII mode				
-	nodr : MODBUS RTU mode				
cñno	Instrument number	0			
0	Sets the instrument number. The instrument numbers chould be set one by one when	multiple instrumente are			
	The instrument numbers should be set one by one when				
connected in Serial communication, otherwise communication is impo					
cā58	Setting range: 0 to 95				
95	Communication speed 9600 bps Selects a communication speed equal to that of the host computer.				
	Selection item:				
	3600 bps				
	□ <i>IB2</i> : 19200 bps				
	<i>∃</i> ∃∃∃ : 38400 bps				
6.7 <i>F</i> .	Data bit/Parity	7 bits/Even			
788n	Selects data bit and parity.	1 510/27011			
	Selection item:				
	Booon: 8 bits/No parity				
	קסס : 7 bits/No parity				
	BEBn : 8 bits/Even				
	フ <i>E 出っ</i> :7 bits/Even				
	ದ್ದದ್ದ : 8 bits/Odd				
	ີໄລຝີຝ໌ : 7 bits/Odd				
<u>ะกั</u> นโ	Stop bit	1 bit			
1	Selects the stop bit.				
	Selection item:				
	: 1 bit				
	\vec{z} : 2 bits				

Press the set with the set of t

11.3 Communication Procedure

Communication starts with command transmission from the host computer (hereafter Master) and ends with the response of the WIL-102-ECH (hereafter Slave).

Response with Data

When the master sends the reading command, the slave responds with the corresponding set value or current status.

Acknowledgement

When the master sends the setting command, the slave responds by sending acknowledgement after the processing is terminated.

Negative Acknowledgement

When the master sends a non-existent command or value out of the setting range, the slave returns a negative acknowledgement.

No Response

The slave will not respond to the master in the following cases:

- Global address (Shinko protocol) is set.
- Broadcast address (MODBUS protocol) is set.
- · Communication error (framing error, parity error)
- Checksum error (Shinko protocol), LRC discrepancy (MODBUS ASCII mode), CRC-16 discrepancy (MODBUS RTU mode)

Communication Timing of the RS-485

Master Side (Take note while programming)

When the master starts transmission through the RS-485 communication line, the master is arranged so as to provide an idle status (mark status) transmission period of 1 or more characters before sending the command to ensure synchronization on the receiving side.

Set the program so that the master can disconnect the transmitter from the communication line within a 1-character transmission period after sending the command in preparation for reception of the response from the slave.

To avoid collision of transmissions between the master and the slave, send the next command after carefully checking that the master has received the response.

If a response to the command is not returned due to communication errors, set the Retry Processing to send the command again. (It is recommended to execute Retry twice or more.)

Slave Side

When the slave starts transmission through the RS-485 communication line, the slave is arranged so as to provide an idle status (mark status) transmission period of 1 or more characters before sending the response to ensure synchronization on the receiving side.

The slave is arranged so as to disconnect the transmitter from the communication line within a 1-character transmission period after sending the response.

11.4 Shinko Protocol

11.4.1 Transmission Mode

Shinko protocol is composed of ASCII. Hexadecimal (0 to 9, A to F), which is divided into high order (4-bit) and low order (4-bit) out of 8-bit binary data in command is transmitted as ASCII characters. Data format Start bit: 1 bit

Start bit: 1 bit Data bit: 7 bits Parity: Even Stop bit: 1 bit

Error detection: Checksum

11.4.2 Command Configuration

All commands are composed of ASCII.

The data (set value, decimal number) is represented by hexadecimal numbers.

The negative numbers are represented in 2's complement.

Numerals written below the command represent number of characters.

(1) Setting Command

Header (02H)	Address	Sub address (20H)	Command type (50H)	Data item	Data	Checksum	Delimiter (03H)
1	1	1	1	4	4	2	1
	(Fig	g. 11.4.2-1)					

(2) Reading Command

Header (02H)	Address	Sub address (20H)	Command type (20H)	Data item	Checksum	Delimiter (03H)
1	1	1	1	4	2	1
	/ _ -					

(Fig. 11.4.2-2)

(3) Response with Data

Header (06H)	Address	Sub address (20H)	Command type (20H)	Data item	Data	Checksum	Delimiter (03H)
1	1	1	1	4	4	2	1
	(Fig	g. 11.4.2-3)					

(4) Acknowledgement

1								
	Header (06H)	Address	Checksum	Delimiter (03H)				
	1	1	2	1				
		(Fig. 11.4.2-4)						

(5) Negative Acknowledgement

Header (15H)	Address	Error code	Checksum	Delimiter (03H)	
1	1	1	2	1	
(Fig. 11.4.2-5)					

Header:

Control code to represent the beginning of the command or the response. ASCII codes are used.

Setting command, Reading command: STX (02H) fixed

Response with data, Acknowledgement: ACK (06H) fixed

Negative acknowledgement: NAK (15H) fixed

Instrument Number (Address): Numbers by which the master discerns each slave.

Instrument numbers 0 to 94 and Global address 95.

ASCII codes (20H to 7FH) are used by adding 20H to instrument numbers 0 to 95 (00H to 5FH).

95 (7FH) is called Global address, which is used when the same command is sent to all the slaves connected. However, the response is not returned.

Sub Address: 20H fixed

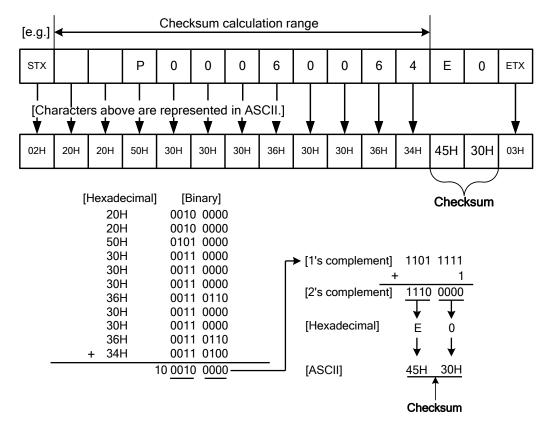
Command Type: Code to discern Setting command (50H) and Reading command (20H).

Data Item:	Classification of the command object. Composed of 4-digit hexadecimal numbers, using ASCII. (Refer to "11.6. Communication Command Table".) (pp.55 to 63)
Data:	The contents of data (set value) differ depending on the setting command. Composed of 4-digit hexadecimal numbers, using ASCII. (Refer to "11.6. Communication Command Table".) (pp.55 to 63)
Checksum:	2-character data to detect communication errors. (Refer to "11.4.3 Checksum Calculation".) (p.50)
Delimiter:	Control code to represent the end of command. ASCII code ETX (03H) fixed
Error Code:	 Represents an error type, using ASCII. 1 (31H)Non-existent command 2 (32H)Not used 3 (33H)Setting outside the setting range 4 (34H)Status unable to be set (e.g. During calibration mode) 5 (35H)During setting mode by keypad operation

11.4.3 Checksum Calculation

Checksum is used to detect receiving errors in the command or data. Set the program for the master side as well to calculate the checksum of the response data from the slaves so that communication errors can be checked.

The ASCII code (hexadecimal) corresponding to the characters which range from the address to that before the checksum is converted to binary notation, and the total value is calculated. The lower one byte of the total value is converted to 2's complement, and then to hexadecimal numbers, that is, ASCII code for the checksum.


• 1's complement: Reverse each binary bit. 0 will become 1 and vice versa.

• 2's complement: Add 1 to 1's complement.

Checksum Calculation Example

A11 value: 1.00 (0064H)

Address (instrument number): 0 (20H)

(Fig. 11.4.3-1)

11.5 MODBUS Protocol

11.5.1 Transmission Mode

There are 2 transmission modes (ASCII and RTU) in MODBUS protocol.

ASCII Mode

Hexadecimal (0 to 9, A to F), which is divided into high order (4-bit) and low order (4-bit) out of 8-bit binary data in command is transmitted as ASCII characters.

Data format Start bit: 1 bit Data bit: 7 bits (8 bits) (Selectable) Parity: Even (No parity, Odd) (Selectable) Stop bit: 1 bit (2 bits) (Selectable)

Error detection : LRC (Longitudinal Redundancy Check)

RTU Mode

8-bit binary data in command is transmitted as it is.

Data format Start bit: 1 bit

Data bit: 8 bits

Parity: No parity (Even, Odd) (Selectable) Stop bit: 1 bit (2 bits) (Selectable)

Error detection: CRC-16 (Cyclic Redundancy Check)

11.5.2 Data Communication Interval

ASCII Mode

Max.1 second of interval between ASCII mode characters

RTU Mode

Communication speed 9600 bps, 19200 bps:

To transmit continuously, an interval between characters which consist of one message, must be within 1.5-character transmission times.

Communication speed 38400 bps:

To transmit continuously, an interval between characters which consist of one message, must be within 750 μ s.

If an interval lasts longer than 1.5-character transmission times or 750 μ s, the WIL-102-ECH assumes that transmission from the master is finished, which results in a communication error, and will not return a response.

11.5.3 Message Configuration

ASCII Mode

ASCII mode message is configured to start by Header [: (colon)(3AH)] and end by Delimiter [CR (carriage return) (0DH) + LF (Line feed)(0AH)].

Header	Slave	Function	Data	Error Check	Delimiter	Delimiter
(:)	Address	Code	Dala	LRC	(CR)	(LF)

RTU Mode

Communication speed 9600 bps, 19200 bps: RTU mode is configured to start after idle time is processed for more than 3.5-character transmissions, and end after idle time is processed for more than 3.5-character transmissions.

Communication speed 38400 bps: RTU mode is configured to start after idle time is processed for more than 1.75 ms, and end after idle time is processed for more than 1.75 ms.

3.5 Idle	Slave	Function	Doto	Error Check	3.5 Idle
Characters	Address	Code	Dala	CRC-16	Characters

(1) Slave Address

Slave address is an individual instrument number on the slave side, and is set within the range 0 to 95 (00H to 5FH).

The master identifies slaves by the slave address of the requested message.

The slave informs the master which slave is responding to the master by placing its own address in the response message.

Slave address 00H (Broadcast address) can identify all the slaves connected. However, slaves do not respond.

(2) Function Code

The function code is the command code for the slave to undertake the following action types. **(Table 11.5.3-1)**

Function Code	Contents
03 (03H)	Reading the set value and information from slaves
06 (06H)	Setting to slaves

Function code is used to discern whether the response is normal (acknowledgement) or if any error (negative acknowledgement) has occurred when the slave returns the response message to the master. When acknowledgement is returned, the slave simply returns the original function code.

When negative acknowledgement is returned, the MSB of the original function code is set as 1 for the response.

(For example, when the master sends request message setting 10H to the function code by mistake, slave returns 90H by setting the MSB to 1, because the former is an illegal function.)

For negative acknowledgement, the exception codes below (Table 11.5.3-2) are set to the data of the response message, and returned to the master in order to inform it of what kind of error has occurred.

(Table 11.5.3-2)

Exception Code	Contents
1 (01H)	Illegal function (Non-existent function)
2 (02H)	Illegal data address (Non-existent data address)
3 (03H)	Illegal data value (Value out of the setting range)
17 (11H)	Shinko protocol error code 4 [Status unable to be set (e.g.) During calibration mode]
18 (12H)	Shinko protocol error code 5 (During setting mode by keypad operation)

(3) Data

Data differs depending on the function code.

A request message from the master is composed of data item, amount of data and setting data. A response message from the slave is composed of the byte count, data and exception codes in negative acknowledgements, corresponding to the request message. Effective range of data is -32768 to 32767 (8000H to 7FFFH).

(4) Error Check

ASCII Mode

After calculating LRC (Longitudinal Redundancy Check) from the slave address to the end of data, the calculated 8-bit data is converted to two ASCII characters, and are appended to the end of message.

How to Calculate LRC

- ① Create a message in RTU mode.
- 2 Add all the values from the slave address to the end of data. This is assumed as X.
- ^③ Make a complement for X (bit reverse). This is assumed as X.
- 4 Add a value of 1 to X. This is assumed as X.
- ⁽⁵⁾ Set X as an LRC to the end of the message.
- ⁶ Convert the whole message to ASCII characters.

RTU Mode

After calculating CRC-16 (Cyclic Redundancy Check) from the slave address to the end of the data, the calculated 16-bit data is appended to the end of message in sequence from low order to high order.

How to calculate CRC-16

In the CRC-16 system, the information is divided by the polynomial series. The remainder is added to the end of the information and transmitted. The generation of a polynomial series is as follows. (Generation of polynomial series: $X^{16} + X^{15} + X^2 + 1$)

- ① Initialize the CRC-16 data (assumed as X) (FFFFH).
- 2 Calculate exclusive OR (XOR) with the 1st data and X. This is assumed as X.
- ③ Shift X one bit to the right. This is assumed as X.
- ⁽⁴⁾ When a carry is generated as a result of the shift, XOR is calculated by X of ⁽³⁾ and the fixed value (A001H). This is assumed as X. If a carry is not generated, go to step ⁽⁵⁾.
- (5) Repeat steps (3) and (4) until shifting 8 times.
- $^{\textcircled{6}}$ XOR is calculated with the next data and X. This is assumed as X.
- O Repeat steps 3 to 5.
- (8) Repeat steps (3) to (5) up to the final data.
- ⁽⁹⁾ Set X as CRC-16 to the end of message in sequence from low order to high order.

11.5.4 Message Example

ASCII Mode

Numerals written below the command represent the number of characters.

① Reading [Slave address 1, Data item 0080H (Conductivity)]

• A request message from the master

Amount of data means how many data items are to be read. It is fixed as (30H 30H 30H 31H).

Header	Slave Address	Function Code	Data Item [0080H]	Amount of Data [0001H]	Error Check LRC	Delimiter
(3AH)	(30H 31H)	(30H 33H)	(30H 30H 38H 30H)	(30H 30H 30H 31H)	(37H 42H)	(0DH 0AH)
1	2	2	4	4	2	2

• Response message from the slave in normal status [1.00 mS/cm (0064H)] The response byte count means the byte count of the data which has been read.

Header	Slave Address	Function Code	Response Byte Count [02H]	Data [0064H]	Error Check LRC	Delimiter
(3AH)	(30H 31H)	(30H 33H)	(30H 32H)	(30H 30H 36H 34H)	(39H 36H)	(0DH 0AH)
1	2	2	2	4	2	2

• Response message from the slave in exception (error) status (When a data item is incorrect) The function code MSB is set to 1 for the response message in exception (error) status (83H). The exception code 02H (Non-existent data address) is returned (error)

The exception code ozi i (Non-existent data address) is returned (enor).								
Header	Slave	Function	Exception Code	Error Check	Delimiter			
	Address	Code	[02H]	LRC				
(3AH)	(30H 31H)	(38H 33H)	(30H 32H)	(37H 41H)	(0DH 0AH)			
1	2	2	2	2	2			

② Setting [Slave address 1, Data item 0006H (A11 value)]

• A request message from the master [When A11 value is set to 1.00 (0064H)]

					/1	
Header	Slave	Function	Data Item	Data	Error Check	Delimiter
	Address	Code	[0006H]	[0064H]	LRC	
(3AH)	(30H 31H)	(30H 36H)	(30H 30H 30H 36H)	(30H 30H 36H 34H)	(38H 44H)	(0DH 0AH)
1	2	2	4	4	2	2

· Response message from the slave in normal status

1 toop of los	e meeeage i					
Header	Slave	Function	Data Item	Data	Error Check	Delimiter
	Address	Code	[0006H]	[0064H]	LRC	
(3AH)	(30H 31H)	(30H 36H)	(30H 30H 30H 36H)	(30H 30H 36H 34H)	(38H 44H)	(0DH 0AH)
1	2	2	4	4	2	2

• Response message from the slave in exception (error) status (When a value out of the setting range is set)

The function code MSB is set to 1 for the response message in exception (error) status (86H). The exception code 03H (Value out of the setting range) is returned (error)

The excep	The exception code USH (value out of the setting range) is returned (enor).						
Header	Slave	Function	Exception Code	Error Check	Delimiter		
	Address	Code	[03H]	LRC			
(3AH)	(30H 31H)	(38H 36H)	(30H 33H)	(37H 36H)	(0DH 0AH)		
1	2	2	2	2	2		

RTU Mode

Numerals written below the command represent the number of characters.

① Reading [Slave address 1, Data item 0080H (Conductivity)]

• A request message from the master

Amount of data means how many data items are to be read. It is fixed as (0001H).

3.5 Idle Characters	Slave Address (01H)	Function Code (03H)	Data Item (0080H)	Amount of Data (0001H)	Error Check CRC-16 (85E2H)	3.5 Idle Characters
	1	1	2	2	2	

• Response message from the slave in normal status [1.00 mS/cm (0064H)]

The response byte count means the byte count of the data which has been read. It is fixed as (02H).

3.5 Idle Characters	Slave Address (01H)	Function Code (03H)	Response Byte Count (02H)	Data (0064H)	Error Check CRC-16 (B9AFH)	3.5 Idle Characters
	1	1	1	2	2	

• Response message from the slave in exception (error) status (When data item is incorrect). The function code MSB is set to 1 for the response message in exception (error) status (83H).

The exception code (02H: Non-existent data address) is returned (error).

3.5 Idle Characters	Slave Address (01H)	Function Code (83H)	Exception Code (02H)	Error Check CRC-16 (C0F1H)	3.5 Idle Characters	
	1	1	1	2	•·	

⁽²⁾ Setting [Slave address 1, Data item 0006H (A11 value)]

• A request message from the master [When A11 value is set to 1.00 (0064H)]

3.5 Idle Characters	Slave Address (01H)	Function Code (06H)	Data Item (0006H)	Data (0064H)	Error Check CRC-16 (6820H)	3.5 Idle Characters	
	1	1	2	2	2		

• Response message from the slave in normal status

3.5 Idle Characters	Slave Address (01H)	Function Code (06H)	Data Item (0006H)	Data (0064H)	Error Check CRC-16 (6820H)	3.5 Idle Characters
	1	1	2	2	2	

• Response message from the slave in exception (error) status (When a value out of the setting range is set)

The function code MSB is set to 1 for the response message in exception (error) status (86H). The exception code (03H: Value out of the setting range) is returned (error).

3.5 Idle Characters	Slave Address (01H)	Function Code (86H)	Exception Code (03H)	Error Check CRC-16 (0261H)	3.5 Idle Characters	
	1	1	1	2		

11.6 Communication Command Table

11.6.1 Notes about Setting/Reading Command

- The data (set value, decimal) is converted to hexadecimal numbers. A negative number is represented in 2's complement.
- When connecting multiple slaves, the address (instrument number) must not be duplicated.
- Data item 0200H to 0209H (User save area 1 to 10) can be read or set in 1 word units.
- Effective range of data is -32768 to 32767 (8000H to 7FFFH).
- MODBUS protocol uses Holding Register addresses. The Holding Register addresses are created as follows. A Shinko command data item is converted to decimal number, and the offset of 40001 is added. The result is the Holding Register address.

Using Data item 0001H (Sensor cell constant) as an example:

- Data item in the sending message is 0001H, however, MODBUS protocol Holding Register address is 40002 (1 + 40001).
- Even if options are not ordered, setting or reading via software communication will be possible. Command contents of the A11, A12, A21, A22 will function, however, Transmission output 1 and 2 command contents will not function.

(1) Setting Command

- Up to 1,000,000 (one million) entries can be stored in non-volatile IC memory. If the number of settings exceeds the limit, the data will not be saved. So, ensure the set values are not frequently changed via software communication. (If a value set via software communication is the same as the value before the setting, the value will not be written in non-volatile IC memory.)
- Be sure to select Lock 3 when changing the set value frequently via software communication. If Lock 3 is selected, all set values – except Sensor cell constant, Measurement unit, Measurement range, Conductivity Zero and Span adjustment values, Temperature calibration value, Transmission output 1 Zero and Span adjustment values, Transmission output 2 Zero and Span adjustment values – can be temporarily changed. However, they revert to their previous value after the power is turned off because they are not saved in the non-volatile IC memory. Do not change setting items (A11, A12, A21 and A22 types). If they are changed, they will affect other setting items.
- Setting range of each item is the same as that of keypad operation.
- When the data (set value) has a decimal point, a whole number (hexadecimal) without a decimal point is used.
- If A11, A12, A21 or A22 type is changed at Data item 0005H (A11 type), 0050H (A12 type), 0051H (A21 type) or 052H (A22 type), the A11, A12, A21 or A22 value will default to 0.00 or 0.0. The output status of A11, A12, A21 or A22 will also be initialized.
- Settings via software communication are possible while in Set value lock status.
- Communication parameters such as Instrument Number, Communication Speed of the slave cannot be set by software communication. They can only be set via the keypad. (p.47)
- When sending a command by Global address [95 (7FH), Shinko protocol] or Broadcast address [00H, MODBUS protocol], the same command is sent to all the slaves connected. However, the response is not returned.

(2) Reading Command

• When the data (set value) has a decimal point, a whole number (hexadecimal) without a decimal point is used for a response.

11.6.2 Setting/Reading Command

Shinko Command Type	MODBUS Function Code		Data Item	Data
50H/20H	06H/03H	0001H	Sensor cell constant	0000H: 1.0/cm 0001H: 10.0/cm
50H/20H	06H/03H	0002H	Cell constant correction value	Set value
50H/20H	06H/03H	0003H	Measurement unit	0000H: Conductivity (mS/cm, µS/cm) 0001H: Conductivity (S/m, mS/m) 0002H: Seawater salinity (%) 0003H: NaCl salinity (%) 0004H: TDS conversion (g/L, mg/L)
50H/20H	06H/03H	0004H	Measurement range	When 1.0/cm is selected in [Sensor cell constant], and Conductivity (mS/cm, μ S/cm) in [Measurement unit]: 0000H: 0.00 to 20.00 mS/cm 0002H: 0.0 to 500.0 mS/cm 0003H: 0 to 5000 mS/cm 0004H: 0.000 to 5.000 mS/cm 0006H: 0.00 to 5.000 mS/cm 0006H: 0.00 to 50.00 mS/cm 0007H: 0 to 2000 μ S/cm 0006H: 0.00 to 50.00 mS/cm 0007H: 0 to 2000 μ S/cm 0008H: 0 to 5000 μ S/cm 0001H: 0.00 to 2.000 S/m 0002H: 0.00 to 50.00 S/m 0002H: 0.00 to 50.00 S/m 0003H: 0.0 to 50.00 S/m 0003H: 0.0 to 50.00 S/m 0003H: 0.0 to 50.00 S/m 0005H: 0.000 to 5.000 S/m 0006H: 0.0 to 200.0 mS/m 0007H: 0.0 to 500.0 mS/m 0006H: 0.0 to 200.0 g/L 0007H: 0.0 to 200.0 g/L 0001H: 0 to 200 g/L 0002H: 0 to 5000 mg/L 0003H: 0 to 2000 mg/L 0001H: 0 to 2000 mg/L 0001H: 0 to 2000 mg/L 0002H: 0 to 2000 mS/cm 0002H: 0 to 2000 mS/cm 0002H: 0 to 2000 mS/cm 0002H: 0 to 2000 mS/cm

Shinko Command	MODBUS Function		Data Item	Data
Туре	Code			When 10.0/cm is selected in [Sensor
				cell constant], and TDS conversion (g/L, mg/L) in [Measurement unit]: 0000H: 0 to 200 g/L 0001H: 0 to 500 g/L 0002H: 0 to 2000 g/L
				When Seawater salinity (%) is selected in [Measurement unit]: 0000H: 0.00 to 4.00%
				When NaCl salinity (%) is selected in [Measurement unit]: 0000H: 0.00 to 20.00%
50H/20H 50H/20H 50H/20H 50H/20H	06H/03H 06H/03H 06H/03H 06H/03H	0005H 0006H 0007H 0008H	A11 type A11 value A11 ON side A11 ON delay time	0000H: No action 0001H: Conductivity input low limit action 0002H: Conductivity input high limit action 0003H: Temperature input low limit action 0004H: Temperature input high limit action 0005H: Error output 0006H: Fail output 0007H: Conductivity input High/Low limits independent action 0008H: Temperature input High/Low limits independent action Set value Set value
50H/20H	06H/03H	0009H	A11 OFF delay time	Set value
50H/20H	06H/03H	000AH	Conductivity input filter time constant	Set value
50H/20H	06H/03H	000BH	TDS conversion factor	Set value
50H/20H	06H/03H	0020H	Temperature compensation method	0000H: Temperature characteristics of NaCl 0001H: Temperature coefficient (%/°C) and a randomly selected reference temperature. 0002H: No temperature compensation
50H/20H	06H/03H	0021H	Temperature coefficient	Set value
50H/20H 50H/20H	06H/03H 06H/03H	0022H 0023H	Reference temperature Temperature input decimal point place	Set value 0000H: No decimal point 0001H: 1 digit after decimal point
50H/20H	06H/03H	0029H	Temperature input filter time constant	Set value
50H/20H	06H/03H	0030H	Set value lock	0000H: Unlock 0001H: Lock 1 0002H: Lock 2 0003H: Lock 3
50H/20H	06H/03H	0031H	Transmission output 1 type	0000H: Conductivity transmission 0001H: Temperature transmission
50H/20H	06H/03H	0032H	Transmission output 1 high limit	Set value
50H/20H	06H/03H	0033H	Transmission output 1 low limit	Set value
50H/20H	06H/03H	0034H	Auto-light function	0000H: Disabled 0001H: Enabled

Shinko Command Type	MODBUS Function Code		Data Item	Data		
50H/20H	06H/03H	0035H	Display selection	DataConductivity DisplayTemperature Display0000HConductivityTemperature0001HConductivityNo indication0002HNo indicationTemperature0003HNo indicationNo indication		
50H/20H	06H/03H	0036H	Indication time	Set value		
50H	06H	0040H	Temperature calibration mode	0000H: Conductivity/Temperature Display Mode 0001H: Temperature calibration mode		
50H/20H	06H/03H	0041H	Temperature calibration value	Set value		
50H	06H	0042H	Conductivity calibration mode	0000H: Conductivity/Temperature Display Mode 0001H: Conductivity calibration Zero adjustment mode 0002H: Conductivity calibration Span adjustment mode		
50H/20H	06H/03H	0043H	Conductivity Zero adjustment value	Set value		
50H/20H	06H/03H	0044H	Conductivity Span adjustment value	Set value		
50H/20H	06H/03H	0045H	A output when input errors occur	0000H: Enabled 0001H: Disabled		
50H/20H	06H/03H	0046H	Cable length correction	Set value		
50H/20H	06H/03H	0047H	Cable cross-section area	Set value		
50H/20H	06H/03H	0048H	Output ON time when A1 output is ON	Set value		
50H/20H 50H/20H	06H/03H 06H/03H	0049H 004AH	Output OFF time when A1 output is ON Output ON time	Set value Set value		
50H/20H	06H/03H	004AH	when A2 output is ON Output OFF time	Set value		
50H/20H	06H/03H	0050H	when A2 output is ON	000H: No action		
				 001H: Conductivity input low limit action 002H: Conductivity input high limit action 003H: Temperature input low limit action 004H: Temperature input high limit action 005H: Error output 006H: Fail output 007H: Conductivity input High/Low limits independent action 008H: Temperature input High/Low limits independent action 		
50H/20H	06H/03H	0051H		 000H: No action 001H: Conductivity input low limit action 002H: Conductivity input high limit action 003H: Temperature input low limit action 004H: Temperature input high limit action 005H: Error output 006H: Fail output 007H: Conductivity input High/Low limits independent action 008H: Temperature input High/Low limits independent action 		

Shinko Command	MODBUS Function		Data Item	Data
Туре	Code			
50H/20H	06H/03H	0052H	A22 type	0000H: No action 0001H: Conductivity input low limit action 0002H: Conductivity input high limit action 0003H: Temperature input low limit action 0004H: Temperature input high limit action 0005H: Error output 0006H: Fail output 0006H: Fail output 0007H: Conductivity input High/Low limits independent action 0008H: Temperature input High/Low
50H/20H	06H/03H	0053H	A12 value	Set value
50H/20H	06H/03H	0054H	A21 value	Set value
50H/20H	06H/03H	0055H	A22 value	Set value
50H/20H	06H/03H	0056H	A12 ON side	Set value
50H/20H	06H/03H	0057H	A21 ON side	Set value
50H/20H	06H/03H	0058H	A22 ON side	Set value
50H/20H	06H/03H	0059H	A12 ON delay time	Set value
50H/20H	06H/03H	005AH	A21 ON delay time	Set value
50H/20H	06H/03H	005BH	A22 ON delay time	Set value
50H/20H	06H/03H	005CH	A12 OFF delay time	Set value
50H/20H	06H/03H	005DH	A21 OFF delay time	Set value
50H/20H	06H/03H	005EH	A22 OFF delay time	Set value
50H/20H	06H/03H	0068H	Conductivity input	Set value
001#2011	001 # 0011	000011	sensor correction	
50H/20H	06H/03H	0069H	Temperature Display when no temperature compensation	0000H: Unlit 0001H: Reference temperature 0002H: Measured value
50H/20H	06H/03H	006AH	A1 output allocation	0000H: A11 type 0001H: A12 type 0002H: A21 type 0003H: A22 type 0004H: A11, A12 types 0005H: A21, A22 types 0006H: A11, A21 types 0007H: A12, A22 types 0008H: A11, A12, A21, A22 types
50H/20H	06H/03H	006BH	A2 output allocation	0000H: A11 type 0001H: A12 type 0002H: A21 type 0003H: A22 type 0004H: A11, A12 types 0005H: A21, A22 types 0006H: A11, A21 types 0007H: A12, A22 types 0008H: A11, A12, A21, A22 types
50H/20H	06H/03H	006FH	Pt100 input wire type	0000H: 2-wire type 0001H: 3-wire type
50H	06H	007FH	Key operation change flag clearing	0001H: Clear change flag

Shinko Command Type	MODBUS Function Code		Data Item	Data
50H/20H	06H/03H	0100H	A11 hysteresis type	0000H: Medium Value 0001H: Reference Value
50H/20H	06H/03H	0101H	A12 hysteresis type	0000H: Medium Value 0001H: Reference Value
50H/20H	06H/03H	0102H	A21 hysteresis type	0000H: Medium Value 0001H: Reference Value
50H/20H	06H/03H	0103H	A22 hysteresis type	0000H: Medium Value 0001H: Reference Value
50H/20H	06H/03H	0104H	A11 OFF side	Set value
50H/20H	06H/03H	0105H	A12 OFF side	Set value
50H/20H	06H/03H	0106H	A21 OFF side	Set value
50H/20H	06H/03H	0107H	A22 OFF side	Set value
50H/20H	06H/03H	010FH	Transmission output 1 status when calibrating	0000H: Last value HOLD 0001H: Set value HOLD 0002H: Measured value
50H/20H	06H/03H	0110H	Transmission output 1 value HOLD when calibrating	Set value
50H/20H	06H/03H	0111H	A1 conductivity input error alarm A U type	0000H: No action 0001H: A11 type 0002H: A12 type 0003H: A21 type 0004H: A22 type
50H/20H	06H/03H	0112H	A2 conductivity input error alarm A U type	0000H: No action 0001H: A11 type 0002H: A12 type 0003H: A21 type 0004H: A22 type
50H/20H	06H/03H	0115H	A1 conductivity input error alarm band when A output ON	Set value
50H/20H	06H/03H	0116H	A1 conductivity input error alarm time when A output ON	Set value
50H/20H	06H/03H	0117H	A1 conductivity input error alarm band when A a output OFF	Set value
50H/20H	06H/03H	0118H	A1 conductivity input error alarm time when A output OFF	Set value
50H/20H	06H/03H	0119H	A2 conductivity input error alarm band when A output ON	Set value
50H/20H	06H/03H	011AH	A2 conductivity input error alarm time when A output ON	Set value
50H/20H	06H/03H	011BH	A2 conductivity input error alarm band when A output OFF	Set value
50H/20H	06H/03H	011CH	A2 conductivity input error alarm time when A output OFF	Set value

Shinko Command Type Code			Data Item	Data		
50H/20H	06H/03H	0125H	Conductivity input error alarm time unit	0000H: Second(s) 0001H: Minute(s)		
50H	06H	0126H	Transmission output 1 adjustment mode	0000H: Conductivity/Temperature Display Mode 0001H: Transmission output 1 Zero adjustment mode 0002H: Transmission output 1 Span adjustment mode		
50H/20H	06H/03H	0127H	Transmission output 1 Zero adjustment value	Set value		
50H/20H	06H/03H	0128H	Transmission output 1 Span adjustment value	Set value		
50H/20H	06H/03H	0131H	3-electrode Conductivity Sensor resistance	Set value		
50H/20H	06H/03H	0139H	A11 High/Low limits independent lower side span	Set value		
50H/20H	06H/03H	013AH	A12 High/Low limits independent lower side span	Set value		
50H/20H	06H/03H	013BH	A21 High/Low limits independent lower side span	Set value		
50H/20H	06H/03H	013CH	A22 High/Low limits independent lower side span	Set value		
50H/20H	06H/03H	013DH	A11 High/Low limits independent upper side span	Set value		
50H/20H	06H/03H	013EH	A12 High/Low limits independent upper side span	Set value		
50H/20H	06H/03H	013FH	A21 High/Low limits independent upper side span	Set value		
50H/20H	06H/03H	0140H	A22 High/Low limits independent upper side span	Set value		
50H/20H	06H/03H	0141H	A11 hysteresis	Set value		
50H/20H	06H/03H	0142H	A12 hysteresis	Set value		
50H/20H	06H/03H	0143H	A21 hysteresis	Set value		
50H/20H	06H/03H	0144H	A22 hysteresis	Set value		
50H/20H	06H/03H	0147H	Transmission output 2 type	0000H: Conductivity transmission 0001H: Temperature transmission		
50H/20H	06H/03H	0148H	Transmission output 2 high limit	Set value		
50H/20H	06H/03H	0149H	Transmission output 2 low limit	Set value		
50H	06H	014AH	Transmission output 2 adjustment mode (*)	0000H: Conductivity/Temperature display mode 0001H: Transmission output 2 Zero adjustment mode 0002H: Transmission output 2 Span adjustment mode		
50H / 20H	06H/03H	014BH	Transmission output 2 Zero adjustment value	Set value		
50H / 20H	06H/03H	014CH	Transmission output 2 Span adjustment value	Set value		
50H / 20H	06H/03H	014DH	Transmission output 2 status when calibrating	0000H: Last value HOLD 0001H: Set value HOLD 0002H: Measured value		

(*) If 'Setting' is executed while Transmission output 2 (TA2 option) is not ordered, the following error code will be returned.
Shinko protocol: Error code 4 (34H)
Modbus: Exception code 17 (11H)

Shinko Command Type	MODBUS Function Code		Data Item	Data
50H / 20H	06H/03H	014EH	Transmission output 2 value HOLD when calibrating	Set value
50H / 20H	06H/03H	0151H	Conductivity inputs for moving average	Set value
50H / 20H	06H/03H	0152H	Temperature inputs for moving average	Set value
50H / 20H	06H/03H	0200H	User save area 1	-32768 to 32767 (8000H to 7FFFH)
50H / 20H	06H/03H	0201H	User save area 2	-32768 to 32767 (8000H to 7FFFH)
50H / 20H	06H/03H	0202H	User save area 3	-32768 to 32767 (8000H to 7FFFH)
50H / 20H	06H/03H	0203H	User save area 4	-32768 to 32767 (8000H to 7FFFH)
50H / 20H	06H/03H	0204H	User save area 5	-32768 to 32767 (8000H to 7FFFH)
50H / 20H	06H/03H	0205H	User save area 6	-32768 to 32767 (8000H to 7FFFH)
50H / 20H	06H/03H	0206H	User save area 7	-32768 to 32767 (8000H to 7FFFH)
50H / 20H	06H/03H	0207H	User save area 8	-32768 to 32767 (8000H to 7FFH)
50H / 20H	06H/03H	0208H	User save area 9	-32768 to 32767 (8000H to 7FFH)
50H / 20H	06H/03H	0209H	User save area 10	-32768 to 32767 (8000H to 7FFFH)

11.6.3 Read Only Command

Shinko Command Type	MODBUS Function Code		Data	Item		Data		
20H	03H	0080H	Conductivit	y (*)		Conductivity		
20H	03H	0080H	Status flag 1 0000 0000 0000 0000 2 ¹⁵ to 2 ⁰ 2 ⁰ digit: Temperature sensor burnout 0: Normal 1: Burnout 2 ¹ digit: Temperature sensor short-circuited 0: Normal 1: Short-circuited 2 ² digit: Outside temperature compensation range: Exceeding 110.0°C 0: Normal 1: Exceeding 110.0°C 2 ³ digit: Outside temperature compensation range: Less than 0.0°C 0: Normal 1: Less than 0.0°C 2 ⁴ digit: Outside measurement range of conductivity measured value, salinity and TDS conversion (high limit) 0: Normal 1: Outside high limit 2 ⁵ digit: Outside measurement range of conductivity measured value, salinity and TDS conversion (low limit) 0: Normal 1: Outside high limit 2 ⁵ digit: A11 output flag 0: OFF 1: ON 2 ⁷ digit: A12 output flag 0: OFF 1: ON 2 ⁸ digit: A21 output flag 0: OFF 1: ON 2 ⁹ digit: A22 output flag 0: OFF 1: ON					
			2^{10} digit: No 2^{11} digit: Ur		0	nductivity/Temperature Display Mode		
			2 ¹² 2 ¹³ diai	ts: Cor		ting mode ation status flag		
			2 , 2 digi 2 ¹³	2 ¹²		Status		
			0	0	Conductivity/	Femperature Display Mode		
			0	1		ctivity calibration Zero		
			1	0		ctivity calibration Span		
			2 ¹⁴ digit: A1 2 ¹⁵ digit: Cł			0: OFF 1: ON		
20H	03H	0090H	Temperatu		, , , , , , , , , , , , , , , , , , , ,	Temperature		

MODBUS Function Code			Data I	tem		Data	
03H	0091H		-				
			0000				
			.:		-		
					· ·	0: OFF 1: ON	
			-		· ·	ut 1 adjustment status flag	
			2 ⁵	2 ⁴	•	Status	
			0	0	Conductivity	/Temperature Display Mode	
			0	1	During Trans	mission output 1 Zero adjustment	
					in Transmiss	ion output 1 adjustment mode	
			1	0	0	mission output 1 Span adjustment	
					in Transmiss	ion output 1 adjustment mode	
		2 ⁶ dig	jit: A1 c	conduc	tivity input erro	or alarm output flag	
		0: OFF 1: ON					
		2 ⁷ dig	jit: A2 c	conduc	tivity input erro		
		08 09	-11 14	T		0: OFF 1: ON	
		2°, 2°			smission outpu		
					Conductivity	Status Temperature Display Mode	
						mission output 2 Zero adjustment	
			0	1	•	ion output 2 adjustment mode	
			1	0		mission output 2 Span adjustment	
				-	•	ion output 2 adjustment mode	
		2 ¹⁰ . 2	¹¹ diaits	s:Not u		· · ·	
			2 ¹³	2 ¹²		Status	
			0	0	Conductivity	Temperature Display Mode	
			0	1	During temp	erature calibration	
		2 ¹⁴ , 2	¹⁵ digits	s:Not u	ised (Always ())	
	Function Code 03H	Function Code03H0091H	Function Code Statu 0000 2 ¹⁵ 03H Statu 0000 2 ¹⁵ 2° dig 2 ¹ dig 2 ² , 2 ³ 2 ⁴ , 2 ⁵ 2 ⁶ dig 2 ⁷ dig 2 ⁷ dig 2 ⁸ , 2 ⁹ 2 ¹ , 2 ¹⁰ , 2 2 ¹¹ , 2	Function Code Data I 03H 0091H Status flag 2 0000 0000 2^{15} 2^0 digit: 2^1 digit: $2^2, 2^3$ digits: $2^4, 2^5$ digits: $2^4, 2^5$ digits: $2^4, 2^5$ digits: $2^4, 2^5$ digits: 2^6 digit: A1 d 1 26 digit: A1 d 27 digit: A2 d 28, 29 digits: 2^9 0 1 27 digit: A2 d 1 27 digit: A2 d 1 27 digit: A2 d 1 210, 211 digits 212, 213 digits 213 0 0 214, 215 digits	Function Code Data Item 03H 0091H Status flag 2 0000 0000 0000 2^{15} to 2^{0} digit: Not u 2^{1} digit: A2 or $2^{2}, 2^{3}$ digits: Not u $2^{4}, 2^{5}$ digits: Trans 2^{5} 2^{4} 0 0 2^{4}, 2^{5} digits: Trans 2^{5} 2^{4} 0 0 1 0 2^{6} digit: A1 conduct 2^{7} digit: A2 conduct 2^{7} digit: A2 conduct 2^{7} digits: Trans 2^{9} $2^{8}, 2^{9}$ digits: Trans 2^{9} 0 1 0 2^{10} , 2^{11} digits: Trans 2^{9} 0 1 0 $2^{10}, 2^{11}$ digits: Not u $2^{12}, 2^{13}$ digits: Temp 2^{13} 0 0 $2^{14}, 2^{15}$ digits: Not u	Function Code Data Item 03H 0091H Status flag 2 0000 0000 0000 0000 2 ¹⁵ to 2 ⁰ 2^{0} digit: Not used (Always 0 2 ¹ digit: A2 output 2^{2} , 2 ³ digits: Not used (Always 0 2 ⁴ , 2 ⁵ digits: Transmission output 2^{5} , 2 ⁴ 0 0 Conductivity, 0 1 0 0 Conductivity, 0 1 0 During Trans- in Transmission in Transmission 2 ⁶ digit: A1 conductivity input error 2 ⁷ digit: A2 2 ⁷ digit: A2 conductivity input error 2 ⁷ digits: Transmission output 2 ⁸ , 2 ⁹ digits: Transmission output 2 ⁸ , 2 ⁹ digits: Transmission output 2 ⁸ , 2 ⁹ digits: Transmission output 2 ⁸ , 2 ⁹ digits: Transmission output 2 ¹⁰ , 2 ¹¹ digits: Not used (Always 0 2 ¹² , 2 ¹³ digits: 1 0 During Trans- in Transmission	

(*): If 0002H [Seawater salinity (%)] is selected for data item 0003H (Measurement unit), the response data at the time of input short-circuit will be the fixed value 3000 (30.00 %).
 Also, if 0003H [NaCl salinity (%)] is selected, the response data at the time of input short-circuit will be the fixed value 2500 (25.00 %).

11.7 Conductivity & Temperature Calibrations, Transmission Output 1 & 2 Adjustments via Communication Command

Via Communication Comman

11.7.1 Conductivity Calibration

Cell constant may vary due to deterioration of the 4-electrode Conductivity Sensor. To correct the varied cell constant, calibration must be performed. Calibrate Conductivity Zero adjustment first, followed by Conductivity Span adjustment.

The following outlines the procedure for conductivity calibration.

(1) Conductivity Zero adjustment

- ^① When selecting Last value HOLD (0000H) at Data item 010FH (Transmission output 1 status when calibrating) or 014DH (Transmission output 2 status when calibrating), select it while the 4-elctrode Conductivity Sensor is being immersed in the solution currently measured.
- ² At this stage, do not immerse the 4-elctrode Conductivity Sensor in the standard solution.
- ⁽³⁾ Set Data item 0042H (Conductivity calibration mode) to 0001H. The unit moves to Conductivity calibration Zero adjustment mode. If 2¹³, 2¹² digits are read at Data item 0081H (Status flag 1), 01 (During Conductivity calibration Zero adjustment mode) will be returned.
- (4) Set the Conductivity Zero adjustment value at Data item 0043H (Conductivity Zero adjustment value) so that conductivity becomes 0 (zero).

When conductivity is 0 (zero), it is not necessary to adjust.

(5) Set Data item 0042H (Conductivity calibration mode) to 0000H. Conductivity Zero adjustment is complete, and the unit will revert to Conductivity/Temperature Display Mode.

(2) Conductivity Span adjustment

- ① Immerse the 4-elctrode Conductivity Sensor in the standard solution.
- Set Data item 0042H (Conductivity calibration mode) to 0002H.
 The unit moves to Conductivity calibration Span adjustment mode.
 If 2¹³, 2¹² digits are read at Data item 0081H (Status flag 1), 10 (During Conductivity calibration Span adjustment mode) will be returned.
- ^③ Set the Conductivity Span adjustment value at Data item 0044H (Conductivity Span adjustment value), while checking the conductivity.
- ④ Set Data item 0042H (Conductivity calibration mode) to 0000H. Conductivity Span adjustment is complete, and the unit will revert to Conductivity/Temperature Display Mode.

If Conductivity calibration cannot be performed while calibrating conductivity due to temperature compensation error, Conductivity measurement value error, etc., Error code 1 (Burnout, Shortcircuited, etc.) will be returned after 2⁰ to 2⁵ digits are read at Data item 0081H (Status flag 1). To cancel the error code, set Data item 0042H (Conductivity calibration mode) to 0000H. The unit will revert to Conductivity/Temperature Display Mode.

If Conductivity Zero/Span adjustment value is set at Data item 0043H (Conductivity Zero adjustment value) or 0044H (Conductivity Span adjustment value) in Conductivity/Temperature Display Mode, the following error code will be returned.

- Shinko protocol: Error code 34H
- MODBUS protocol: Exception code 11H

11.7.2 Temperature Calibration

Temperature calibration is performed by setting temperature calibration value.

The following outlines the procedure for Temperature calibration.

① Set Data item 0040H (Temperature calibration mode) to 0001H. The unit moves to Temperature calibration mode.

If 2¹³, 2¹² digits are read at Data item 0091H (Status Flag 2), 01 (During temperature calibration) will be returned.

- ⁽²⁾ Set the Temperature calibration value at Data item 0041H (Temperature calibration value), while checking the temperature.
- ^③ Set Data item 0040H (Temperature calibration mode) to 0000H. Temperature calibration is complete, and the unit will revert to Conductivity/Temperature Display Mode.

If Temperature calibration cannot be performed while calibrating temperature due to input error, calibration value error, etc., Error code 1 (Burnout, Short-circuited, etc.) will be returned after 2^0 to 2^5 digits are read at Data item 0081H.

To cancel the error code, set Data item 0040H (Temperature calibration mode) to 0000H. The unit will revert to Conductivity/Temperature Display Mode.

If Temperature calibration value is set at Data item 0041H (Temperature calibration value) in Conductivity/Temperature Display Mode, the following error code will be returned.

Shinko protocol: Error code 34H MODBUS protocol: Exception code 11H

11.7.3 Transmission Output 1 Adjustment

Fine adjustment of Transmission output 1 is performed.

This instrument is adjusted at the factory, however, differences may occur between the indication value of the connected equipment (recorders, etc.) and output value of this instrument. In this case, perform Transmission output 1 Zero and Span adjustments.

The following outlines the procedure for Transmission output 1 adjustment.

- Set Data item 0126H (Transmission output 1 adjustment mode) to 0001H. The unit moves to Transmission output 1 Zero adjustment mode. If 2⁵, 2⁴ digits are read at Data item 0091H (Status flag 2), 01 (During Transmission output 1 Zero adjustment in Transmission output 1 adjustment mode) will be returned.
- ⁽²⁾ Set the Transmission output 1 Zero adjustment value at Data item 0127H (Transmission output 1 Zero adjustment value), while viewing the value indicated on the connected equipment (recorders, etc.).

Setting range: ±5.00% of Transmission output 1 span

- (3) Set Data item 0126H (Transmission output 1 adjustment mode) to 0002H. The unit moves to Transmission output 1 Span adjustment mode. If 2⁵, 2⁴ digits are read at Data item 0091H (Status flag 2), 10 (During Transmission output 1 Span adjustment in Transmission output 1 adjustment mode) will be returned.
- ④ Set Transmission output 1 Span adjustment value at Data item 0128H (Transmission output 1 Span adjustment value), while viewing the value indicated on the connected equipment (recorders, etc.).
 - Setting range: ±5.00% of Transmission output 1 span
- $^{(5)}$ Repeat steps $^{(1)}$ to $^{(4)}$ if necessary.
- ⁽⁶⁾ To finish Transmission output 1 adjustment, set Data item 0126H (Transmission output 1 adjustment mode) to 0000H.

The unit reverts to Conductivity/Temperature Display Mode.

11.7.4 Transmission Output 2 Adjustment

Fine adjustment of Transmission output 2 is performed.

This instrument is adjusted at the factory, however, differences may occur between the indication value of the connected equipment (recorders, etc.) and output value of this instrument. In this case, perform Transmission output 2 Zero and Span adjustments.

The following outlines the procedure for Transmission output 2 adjustment.

- Set Data item 014AH (Transmission output 2 adjustment mode) to 0001H. The unit moves to Transmission output 2 Zero adjustment mode. If 2⁹, 2⁸ digits are read at Data item 0091H (Status flag 2), 01 (During Transmission output 2 Zero adjustment in Transmission output 2 adjustment mode) will be returned.
- ⁽²⁾ Set the Transmission output 2 Zero adjustment value at Data item 014BH (Transmission output 2 Zero adjustment value), while viewing the value indicated on the connected equipment (recorders, etc.).
 - Setting range: ±5.00% of Transmission output 2 span
- ⁽³⁾ Set Data item 014AH (Transmission output 2 adjustment mode) to 0002H. The unit moves to Transmission output 2 Span adjustment mode. If 2⁹, 2⁸ digits are read at Data item 0091H (Status flag 2), 10 (During Transmission output 2 Span adjustment in Transmission output 2 adjustment mode) will be returned.
- ④ Set Transmission output 2 Span adjustment value at Data item 014CH (Transmission output 2 Span adjustment value), while viewing the value indicated on the connected equipment (recorders, etc.).

Setting range: ±5.00% of Transmission output 2 span

- $^{(5)}$ Repeat steps $^{(1)}$ to $^{(4)}$ if necessary.
- ⁽⁶⁾ To finish Transmission output 2 adjustment, set Data item 014AH (Transmission output 2 adjustment mode) to 0000H.

The unit reverts to Conductivity/Temperature Display Mode.

11.8 Notes on Programming Monitoring Software

11.8.1 How to Speed up the Scan Time

When monitoring multiple units of the WIL-102-ECH, set the program so that the requisite minimum pieces of data such as Data item 0080H (Conductivity), Data item 0090H (Temperature), Data item 0081H (Status flag 1), Data item 0091H (Status flag 2) can be read.

For other data, set the program so that they can be read only when their set value has been changed. This will speed up the scan time.

11.8.2 How to Read the Set Value Changes Made by Front Keypad Operation

If any set value is changed by keypad operation, the instrument sets [0081H (Status flag 1) 2¹⁵: Change in key operation] to 1 (Yes).

There are 2 methods of reading the set value changes made by the front keypad.

(1) Reading Method 1

- ⁽¹⁾ On the monitoring software side, check that [0081H (Status flag 1) 2¹⁵: Change in key operation] has been set to 1 (Yes), then read all set values.
- ⁽²⁾ Clear [0081H (Status flag 1) 2¹⁵: Change in key operation], by setting Data item 007FH (Key operation change flag clearing) to 0001H (Clear change flag).

If 007FH (Key operation change flag clearing) is set to 0001H (Clear change flag) during the setting mode of the instrument, Error code 5 (35H, Shinko protocol) or Exception Code 18 (12H, MODBUS protocol) will be returned as a negative acknowledgement. And [0081H (Status flag 1) 2¹⁵: Change in key operation] cannot be cleared.

Set a program so that all set values can be read when a negative acknowledgement is returned.

③ Read all set values again after acknowledgement is returned.

(2) Reading Method 2

- ⁽¹⁾ On the monitoring software side, check that [0081H (Status flag 1) 2¹⁵: Change in key operation] has been set to 1 (Yes), then set 007FH (Key operation change flag clearing) to 0001H (Clear change flag).
- ⁽²⁾ Set the program depending on the acknowledgement or negative acknowledgement as follows.

When acknowledgement is returned:

Consider it as settings completed, and read all set values.

When Error code 5 (35H, Shinko protocol) or Exception code 18 (12H, MODBUS protocol) is returned as a negative acknowledgement:

Consider it as still in setting mode, and read the requisite minimum pieces of data such as 0080H (Conductivity), 0090H (Temperature), 0081H (Status flag 1), 0091H (Status flag 2), then return to step 1.

Thus, programs which do not affect the scan time can be created using the methods described above, even if set values on the monitoring software will not be updated until settings are complete.

11.8.3 Note when Sending All Set Values Simultaneously

• If A type is changed at Data item 0005H (A11 type), 0050H (A12 type), 0051H (A21 type) or 0052H (A22 type), the A11, A12, A21 or A22 value will default to 0.00 or 0.0. Output status of A11, A12, A21 or A22 will also be initialized.

First, send the A11, A12, A21, A22 type, then send the A11, A12, A21, A22 value set at Data item 0006H (A11 value), 0053H (A12 value), 0054H (A21 value) and 0055H (A22 value).

12. Specifications 12.1 Standard Specifications

Rating

Rated Scale		Input			Input Range Resolution		
			Cell	0.00 to 20.00 m	nS/cm	0.01 mS/cm	
			constant	0.0 to 200.0 mS	S/cm	0.1 mS/cm	
			1.0/cm	0.0 to 500.0 mS	S/cm	0.1 mS/cm	
				0 to 500 mS/cm	ו	1 mS/cm	
				0.000 to 2.000	mS/cm	0.001 mS/cm	
				0.000 to 5.000	mS/cm	0.001 mS/cm	
				0.00 to 50.00 m	nS/cm	0.01 mS/cm	
				0 to 2000 µS/c	m	1 μS/cm	
				0 to 5000 µS/c	m	1 ^µ S/cm	
				0.000 to 2.000	S/m	0.001 S/m	
				0.00 to 20.00 S	/m	0.01 S/m	
				0.00 to 50.00 S	/m	0.01 S/m	
				0.0 to 50.0 S/m		0.1 S/m	
				0 to 2000 mS/n		1 mS/m	
		Conductivity		0.000 to 5.000		0.001 S/m	
	Conductivity	nct		0.0 to 200.0 ms		0.1 mS/m	
		puq		0.0 to 500.0 ms		0.1 mS/m	
	puq	ŭ		0.0 to 20.0 g/L		0.1 g/L	
	ŭ			0 to 200 g/L		1 g/L	
				0 to 500 g/L		1 g/L	
				0 to 2000 mg/L		1 mg/L	
				0 to 5000 mg/L		1 mg/L	
			Cell	0.0 to 200.0 ms		0.1 mS/cm	
			constant	0.0 to 500.0 ms		0.1 mS/cm	
			10.0/cm	0 to 2000 mS/c		1 mS/cm	
				0.00 to 20.00 S		0.01 S/m	
				0.00 to 50.00 S		0.01 S/m	
				0.0 to 200.0 S/r		0.1 S/m	
				0 to 200 g/L		1 g/L	
				0 to 500 g/L		1 g/L	
				0 to 2000 g/L		1 g/L	
		Seawater	salinity	0.00 to 4.00%		0.01%	
		NaCl salir	· · · · ·	0.00 to 20.00%		0.01%	
	Temper-	Pt100	iity	0.0 to 100.0℃		0.01 ‰ 0.1℃	
	ature	Pt100		0.0 to 100.0℃		0.1℃ 0.1℃	
			ire indicatio	n, decimal point p	lace is col		
nput				r (Temperature ele			
nput			•	(Temperature ele			
Power supply voltage	Model			-102-ECH		-102-ECH 1	
	Power su voltage	pply	100 to 240) V AC 50/60 Hz	24 V AC/	DC 50/60 Hz	
	Allowable	•	85 to 264	V AC 20 to 28 V		V AC/DC	

General Structure

External Dimensions	30 x 88 x 108 mm (W x H x D, including socket)			
Mounting	DIN rail			
Case	Material: Flame-resistant resin, Color: Light gray			
Panel	Membrane sheet			
Indication Structure	Display			
	Conductivity	Red LED 4-digits, character size: 10 x 4.6 m (H x W)		
	Display			
	Temperature	Red LED 4-digits, character size: 10 x 4.6 m (H x W)		
	Display			
	Action Indicators			
	PWR (Yellow) Lit when power supply is ON.			
	A1 (Red)	Lit when A1 output is ON. (Unlit when TA2 option is added.)		
	A2 (Yellow)	Lit when A2 output is ON. (Unlit when TA option or TA2		
		option is added.)		
	T/R (Yellow)	Lit while in Serial communication TX output (transmitting).		
Setting Structure	Setting method: Input system using membrane sheet key			

Indication Performance

Repeatability	Conductivity:	±0.5% of input span	
	Salinity conversion:	±1% of input span	
	TDS conversion:	±1.5% of input span	
Linearity	Conductivity:	±0.5% of input span	
	Salinity conversion:	±1% of input span	
	TDS conversion:	±1.5% of input span	
Indication Accuracy	Temperature: ±1℃		
Input Sampling Period	250 ms (2 inputs)		
Time Accuracy	Within $\pm 1\%$ of setting time		

Standard Functions

Conductivity	Calibrate Conductivity Zero adjustment first, followed by Conductivity Span			
Calibration	adjustment. However, if Loc / (Lock 1), Loc 2 (Lock 2) or Loc 3			
	(Lock 3) is selected in [Set value lock] (p.31), the unit cannot move to			
	Conductivity calibration mode.			
	In Conductivity Zero adjustment, adjustment is performed so that			
	conductivity becomes 0, without immersing the 4-electrode Conductivity			
	Sensor in the standard solution.			
	In Conductivity Span adjustment, the 4-electrode Conductivity Sensor is immersed and adjustment is performed while checking conductivity.			
	However, it is effective within the input rated range regardless of the			
	adjustment value.			
Temperature	When a sensor cannot be set at the exact location where measurement is			
Calibration	desired, the resulting measured temperature may deviate from the			
	temperature in the desired location. In this case, the desired temperature			
	can be set for the desired location by setting a temperature calibration			
	value. However, it is effective within the input rated range regardless of the			
	temperature calibration value.			

			Q a l'ala		
5 Conversion	Conductivity of a solution results from the amount o				
	U U U U U U U U U U U U U U U U U U U				
	solution, and TDS indicates only the amount of a substance in a				
	substances.				
	TDS can be used correctly to compare the two solutions in ingredient, such as NaCl, is included. However, for comparison solution in which one ingredient such as NaCl is included and solution in which more than one ingredient is included, TDS error				
		formula.			
		•			
		. ,			
	TDS (g/L) = L	(mS/cm) ×	K		
		. ,			
ial Communication	The following operations can be carried out from an external computer.				
		-	-		
		-			
Cable Length	1.2 km (Max), Cable resistance value: Within 50 Ω (Terminators are not				
	necessary, but if used, use 120 Ω minimum on both sides.)				
Communication Line	EIA RS-485				
Communication Method	Half-duplex communication				
Communication Speed	9600, 19200, 38400 bps (Selectable by keypad)				
Synchronization Method	Start-stop synchronization				
Code Form	ASCII, Binary				
Communication Protocol	Shinko protocol, MODBUS ASCII, MODBUS RTU (Selectable by keypad)				
Data Bit/Parity	8 bits/No parity, 7 bits/No parity, 8 bits/Even, 7 bits/Even, 8 bits/Odd, 7 bits/Odd (Selectable by keypad)				
Stop Bit	1, 2 (Selectable by keypad)				
Error Correction	Command request repeat system				
Error Detection	Parity check, Checksum (Shinko protocol), LRC (MODBUS protocol				
Data Format	Communication	Shinko	MODBUS	MODBUS	
	Protocol	Protocol	ASCII	RTU	
	Start bit	1	1	1	
	Data bit	7	7 (8) Selectable	8	
	Parity	Even	Even (No parity, Odd) Selectable	No parity (Even, Odd) Selectable	
	Stop bit11 (2)1 (2)SelectableSelectable				
	Communication Line Communication Method Communication Speed Synchronization Method Code Form Communication Protocol Data Bit/Parity Stop Bit Error Correction	Conductivity of a dissolved gas. Conductivity is an solution, and TD substances. TDS can be used ingredient, such as solution in which of solution in which of TDS and conductiv For Conductivity TDS (g/L) = L TDS (mg/L) = For Conductivity TDS (g/L) = L TDS (mg/L) = K: TDS conve ial Communication Line Cable Length Line Communication Line Communication Line Communication Beed Synchronization Method Communication Speed Synchronization Method Code Form Code Form Code Form Code Form Communication Start-stop synchro Code Form Communication Protocol Data Bit/Parity B bits/No parity, 7 th 7 bits/Odd (Selecta Stop Bit T, 2 (Selectable by Error Correction Communication Protocol Data Format Communication Data Format Communication Data Format Communication Data bit Data bit Parity	Conductivity of a solution residissolved gas. Conductivity is an index indicisolution, and TDS indicates substances.TDS can be used correctly tringredient, such as NaCl, is in solution in which one ingredie solution in which one ingredie solu	Conductivity of a solution results from the amount dissolved gas. Conductivity is an index indicating the total amount solution, and TDS indicates only the amount of substances. TDS can be used correctly to compare the two so ingredient, such as NaCl, is included. However, for consolution in which one ingredient such as NaCl is included. TDS can be used correctly to compare the two so ingredient, such as NaCl, is included. However, for conductivity are expressed with the following For Conductivity are expressed with the following For Conductivity are expressed with the following For Conductivity and C/m × K × 10 TDS (g/L) = L (S/m) × K × 10 TDS (g/L) = L (S/m) × K × 10 TDS (g/L) = L (S/m) × K × 10 TDS (g/L) = L (S/m) × K TDS	

Insulation/Dielectric Strength

	.9		
Circuit Insulation Configuration	Power supply Conductivity input Perform Perform		
	$\begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}$: When the corresponding option is ordered. Insulation Resistance: 10 M Ω minimum, at 500 V DC		
Dielectric Strength	Between power terminal - ground (GND): 1.5 kV AC for 1 minute Between input terminal - ground (GND): 1.5 kV AC for 1 minute Between input terminal - power terminal: 1.5 kV AC for 1 minute		

Attached Functions

Set Value Lock	Lock 1: None of the set values can be changed.				
	Lock 2: Only A11, A12, A21 and A22 values can be changed.				
	Lock 3: All set values – except Sensor cell constant, Measurement unit,				
	Measurement range, Conductivity Zero and Span adjustment values,				
	Temperature calibration value, Transmission output 1 Zero and Span				
	adjustment values, Transmission output 2 Zero and Span adjustment				
	values – can be temporarily changed.				
	However, they revert to their previous value after the power is turned off because they are not saved in the non-volatile IC memory.				
Conductivity Input	When a sensor cannot be set at the exact location where measurement is				
Sensor Correction	desired, the sensor-measured conductivity may deviate from the conductivity in				
	the measured location. In such a case	e, desired conductivity can be obtained			
	by adding a sensor correction value	ue. However, it is effective within the			
	measurement range regardless of the sensor correction value.				
Outside Measurement	When the conductivity measured value, salinity conversion value or TDS				
Range	conversion factor is outside the measurement range:				
	Conductivity Display Temperature Display				
	Conductivity, salinity conversion	Measured temperature			
	high limit or TDS conversion high				
	limit is flashing.				
	When measured temperature is outside the measurement range, the				
	following will be indicated.				
	Conductivity Display	Temperature Display			
	Measured conductivity	Less than 0.0℃: <i>돈ㄷ끕닉</i>			
	Measured conductivity	Exceeding 110.0℃: <i>E┌囧∃</i>			
Power Failure	The setting data is backed up in the r	on-volatile IC memory.			
Countermeasure					
Self-diagnosis	The CPU is monitored by a watchdog timer, and if an abnormal status				
1	occurs, the instrument is switched to				

Warm-up Indication	For approx. 4 seconds after the power is switched ON, the input characters are indicated on the Conductivity Display and Temperature Display.								
	Display	Cł	naracter	Measurement Unit					
		C I	onð	Conductivity (mS/cm)					
		. 5		Conductivity (S/m, mS/m)					
	Conductiv	ity 5	ER	Seawate	Seawater salinity (%)				
	Display	5	トロン NaCl salinity (%)						
		Γ.	d'5	TDS cor	TDS conversion (g/L)				
	Display		naracter	Input T	emperature fication (*)	Selection Iter Input Wire Ty	/pe] (p.30)		
	T	P;	<u> </u>	D14.00	P[-2:2-wire type]				
	Temperatu Display		ГШЭ	Pt100		P/ 3-wire type			
	Display	P;	ר ום	Pt1000					
	(*) This input temperature specification was specified at the time of order				of ordering.				
Display Sleep Function Auto-light Function Cable Length Correction	Conductivity, Temperature or No indication can be selected in [Display selection (p.34)], which is indicated in Conductivity/Temperature Display Mode. If Conductivity and/or Temperature is selected, and if indication time is set, the displays become unlit after the indication time has passed from no operation status. If any errors occur, or if any key is pressed, the display will re-light. If the indication time is set to 0, the display remains lit, and this function does not work. Automatically measures and controls brightness of the Conductivity Display, Temperature Display and action indicators. If $P' \square P'$ (2-wire type) is selected in [Pt100 input wire type (p. 30)], and if sensor cable is too long, temperature measurement error will occur due to								
	cable resistance. This can be corrected by setting the cable length correction value and cable cross-section area.								
Error Code					he Temperatur	e Display.			
	Error Code	Error Type		ror tents		ription	Occurrence		
	E-01	Fail	Temp. S burnout		Temperature wire is burnt				
	Er02	Fail	Temp. S short-ci		Temperature wire is short-		When measuring		
	E-03	Error	Outside comper	•	Measured ter has exceede		or calibrating		
	ЕгОЧ	Error	Outside compen	temp.	Measured ter is less than 0		J J		
	(Abbreviatio	on: Temp	.: Tempera	ture)					

O<u>ther</u>

Power Consumption	Approx. 8 VA
Ambient Temperature	0 to 50°C (32 to 122°F)
Ambient Humidity	35 to 85 %RH (non-condensing)
Altitude	2,000 m or less
Installation environment	Overvoltage category II , Pollution degree 2
Memory protection	Non-volatile IC memory (Number of writes: 1 million times)
Environmental Specification	RoHS directive compliant
Weight	Approx. 200 g (including the socket)
Accessories Included	Instruction manual: 1 copy Unit label: 1 sheet
Accessories Sold Separately	Socket: ASK-001-1 (Finger-safe and screw fall prevention)

12.2 Optional Specifications

A Output (Option Code: EVT or TA)

A	Output	If the measured value exceeds the $A \square \square$ value, the $A \square \square$ output will be				
		turned ON for each A \Box output type.				
		A1 or A2 output turns ON depending on the settings in [A1/A2 output				
		allocation (p.35)] and [Output ON time/OFF time when A1/A2 output ON				
		(pp.35, 36)].				
			I, A cutput status can be read via			
		Status flag 1 (A11, A12, A21, A22 out				
			rors occur, differs depending on the			
		selection in [A \Box output when input	$[A \square]$ output when input errors occur			
			output status will be turned OFF if			
		input errors occur.				
			[A output when input errors occur			
			output status will be maintained if			
		input errors occur.				
		During conductivity calibration, A	action is forced OFF.			
		If Transmission output 1 (TA option) is	ordered, only A1 output can be added.			
	Action	ON/OFF action				
	ADD ON side,	Setting range differs depending on th	e selection of A $\Box\Box$ type and			
	ADD OFF side	measurement range.				
		Conductivity input				
		Cell constant 1.0/cm:				
		Measurement Range	Setting Range			
		0.00 to 20.00 mS/cm	0.00 to 2.00 mS/cm			
		0.0 to 200.0 mS/cm	0.0 to 20.0 mS/cm			
		0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm	0.0 to 20.0 mS/cm 0.0 to 50.0 mS/cm			
		0.0 to 500.0 mS/cm	0.0 to 50.0 mS/cm			
		0.0 to 500.0 mS/cm 0 to 500 mS/cm	0.0 to 50.0 mS/cm 0 to 50 mS/cm			
		0.0 to 500.0 mS/cm 0 to 500 mS/cm 0.000 to 2.000 mS/cm	0.0 to 50.0 mS/cm 0 to 50 mS/cm 0.000 to 0.200 mS/cm			
		0.0 to 500.0 mS/cm 0 to 500 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm	0.0 to 50.0 mS/cm 0 to 50 mS/cm 0.000 to 0.200 mS/cm 0.000 to 0.500 mS/cm			
		0.0 to 500.0 mS/cm 0 to 500 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm 0.00 to 50.00 mS/cm	0.0 to 50.0 mS/cm 0 to 50 mS/cm 0.000 to 0.200 mS/cm 0.000 to 0.500 mS/cm 0.00 to 5.00 mS/cm			
		0.0 to 500.0 mS/cm 0 to 500 mS/cm 0.000 to 2.000 mS/cm 0.000 to 50.00 mS/cm 0.00 to 50.00 mS/cm 0 to 2000 μ S/cm	0.0 to 50.0 mS/cm 0 to 50 mS/cm 0.000 to 0.200 mS/cm 0.000 to 0.500 mS/cm 0.00 to 5.00 mS/cm 0 to 200 µS/cm			
		0.0 to 500.0 mS/cm 0 to 500 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm 0.00 to 50.00 mS/cm 0 to 2000 µS/cm 0 to 5000 µS/cm 0 to 5000 µS/cm	0.0 to 50.0 mS/cm 0 to 50 mS/cm 0.000 to 0.200 mS/cm 0.000 to 0.500 mS/cm 0.00 to 5.00 mS/cm 0 to 200 μS/cm 0 to 500 μS/cm 0 to 500 μS/cm			
		0.0 to 500.0 mS/cm 0 to 500 mS/cm 0.000 to 2.000 mS/cm 0.000 to 50.00 mS/cm 0.00 to 50.00 mS/cm 0 to 2000 µS/cm 0 to 5000 µS/cm 0 to 5000 µS/cm 0.000 to 2.000 S/m	0.0 to 50.0 mS/cm 0 to 50 mS/cm 0.000 to 0.200 mS/cm 0.000 to 0.500 mS/cm 0.00 to 5.00 mS/cm 0 to 200 μS/cm 0 to 500 μS/cm 0 to 500 μS/cm 0 to 500 μS/cm 0 to 500 μS/cm 0.000 to 0.200 S/m			
		$\begin{array}{c} 0.0 \ \text{to} \ 500.0 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 500 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 5.000 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 2000 \ \mu\text{S/cm} \\ \hline 0 \ \text{to} \ 5000 \ \mu\text{S/cm} \\ \hline 0 \ \text{to} \ 5000 \ \mu\text{S/cm} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 20.00 \ \text{S/m} \\ \hline \end{array}$	0.0 to 50.0 mS/cm 0 to 50 mS/cm 0.000 to 0.200 mS/cm 0.000 to 0.500 mS/cm 0.00 to 5.00 mS/cm 0 to 200 µS/cm 0 to 500 µS/cm 0.000 to 0.200 S/m 0.000 to 2.00 S/m			
		$\begin{array}{c} 0.0 \ \text{to} \ 500.0 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 500 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 5.000 \ \text{mS/cm} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 50.00 \ \mu\text{S/cm} \\ \hline 0 \ \text{to} \ 5000 \ \mu\text{S/cm} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 20.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline \end{array}$	0.0 to 50.0 mS/cm 0 to 50 mS/cm 0.000 to 0.200 mS/cm 0.000 to 0.500 mS/cm 0.00 to 5.00 mS/cm 0 to 200 µS/cm 0 to 500 µS/cm 0.000 to 0.200 S/m 0.00 to 2.00 S/m 0.00 to 5.00 S/m			
		$\begin{array}{c} 0.0 \ \text{to} \ 500.0 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 500 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 5.000 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 2000 \ \mu\text{S/cm} \\ \hline 0 \ \text{to} \ 2000 \ \mu\text{S/cm} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{to} \ 50.00 \ \text{to} \ 10 \ \text{to} \$	$\begin{array}{c} 0.0 \ {\rm to} \ 50.0 \ {\rm mS/cm} \\ \hline 0 \ {\rm to} \ 50 \ {\rm mS/cm} \\ \hline 0.000 \ {\rm to} \ 0.200 \ {\rm mS/cm} \\ \hline 0.000 \ {\rm to} \ 0.200 \ {\rm mS/cm} \\ \hline 0.000 \ {\rm to} \ 0.500 \ {\rm mS/cm} \\ \hline 0 \ {\rm to} \ 5.00 \ {\rm mS/cm} \\ \hline 0 \ {\rm to} \ 200 \ \mu {\rm S/cm} \\ \hline 0 \ {\rm to} \ 5.00 \ \mu {\rm S/cm} \\ \hline 0.000 \ {\rm to} \ 0.200 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 0.200 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.00 \ {\rm S/m} \end{array}$			
		$\begin{array}{c} 0.0 \ \text{to} \ 500.0 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 500 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 5.000 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 2000 \ \mu\text{S/cm} \\ \hline 0 \ \text{to} \ 5000 \ \mu\text{S/cm} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0 \ \text{to} \ 2000 \ \text{mS/m} \\ \hline 0 \ \text{to} \ 200 \ \text{mS/m} \\ \hline 0 \ \text{to} \ 200 \ \text{mS/m} \\ \hline 0 \ \text{to} \ 200 \ \text{mS/m} \\ \hline 0 \ \text{to} \ 200 \ \text{mS/m} \\ \hline 0 \ \text{to} \ 200 \ \text{mS/m} \\ \hline 0 \ \text{to} \ 200 \ \text{mS/m} \\ \hline 0 \ \text{mS/m} \ \ 0 \ \text{mS/m} \ 0 \ \text{mS/m} \ \ 0 \ \text{mS/m} \ 0 \ \text{mS/m}$	0.0 to 50.0 mS/cm 0 to 50 mS/cm 0.000 to 0.200 mS/cm 0.000 to 0.500 mS/cm 0.00 to 5.00 mS/cm 0 to 200 μ S/cm 0 to 500 μ S/cm 0.000 to 0.200 S/m 0.00 to 2.00 S/m 0.00 to 5.00 S/m 0.0 to 5.0 S/m 0 to 200 mS/m			
		$\begin{array}{c} 0.0 \ {\rm to} \ 500.0 \ {\rm mS/cm} \\ \hline 0 \ {\rm to} \ 500 \ {\rm mS/cm} \\ \hline 0.000 \ {\rm to} \ 2.000 \ {\rm mS/cm} \\ \hline 0.000 \ {\rm to} \ 5.000 \ {\rm mS/cm} \\ \hline 0.000 \ {\rm to} \ 50.00 \ {\rm mS/cm} \\ \hline 0 \ {\rm to} \ 2000 \ \mu {\rm S/cm} \\ \hline 0 \ {\rm to} \ 2000 \ \mu {\rm S/cm} \\ \hline 0.000 \ {\rm to} \ 2.000 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 20.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.0 \ {\rm to} \ 200.0 \ {\rm mS/m} \\ \hline 0.0 \ {\rm to} \ 200.0 \ {\rm mS/m} \\ \hline 0.0 \ {\rm to} \ 200.0 \ {\rm mS/m} \\ \hline 0.0 \ {\rm to} \ 200.0 \ {\rm mS/m} \\ \hline 0.0 \ {\rm to} \ 50.00 \ {\rm mS/m} \\ \hline 0.0 \ {\rm to} \ 50.00 \ {\rm mS/m} \\ \hline 0.0 \ {\rm to} \ 50.00 \ {\rm mS/m} \\ \hline 0.0 \ {\rm to} \ 50.00 \ {\rm mS/m} \\ \hline 0.0 \ {\rm to} \ 50.00 \ {\rm mS/m} \\ \hline 0.0 \ {\rm to} \ 50.00 \ {\rm mS/m} \\ \hline 0.0 \ {\rm to} \ 50.00 \ {\rm mS/m} \\ \hline 0.0 \ {\rm to} \ 50.00 \ {\rm mS/m} \\ \hline 0.0 \ {\rm to} \ 50.00 \ {\rm mS/m} \\ \hline 0.0 \ {\rm mS/m} \ {\rm mS/m} \\ \hline 0.0 \ {\rm mS/m} \ {\rm mS/$	0.0 to 50.0 mS/cm 0 to 50 mS/cm 0.000 to 0.200 mS/cm 0.000 to 0.500 mS/cm 0.00 to 5.00 mS/cm 0 to 200 µS/cm 0 to 500 µS/cm 0.000 to 0.200 S/m 0.000 to 2.00 S/m 0.00 to 5.00 S/m 0.0 to 5.0 S/m 0 to 200 mS/m 0.000 to 0.500 S/m 0.000 to 0.500 S/m 0.000 to 0.500 S/m			
		$\begin{array}{c} 0.0 \ \text{to} \ 500.0 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 500 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 5.000 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 2000 \ \mbox{\sc m} \\ \hline 0 \ \text{to} \ 5000 \ \mbox{\sc m} \\ \hline 0.000 \ \text{to} \ 5.000 \ \mbox{\sc m} \\ \hline 0.000 \ \text{to} \ 2.000 \ \mbox{\sc m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \mbox{\sc m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \mbox{\sc m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \mbox{\sc m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \mbox{\sc m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \mbox{\sc m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \mbox{\sc m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \mbox{\sc m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \mbox{\sc m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \mbox{\sc m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \mbox{\sc m} \\ \hline 0.0 \ \text{to} \ 500.0 \ \mbox{\sc m} \\ \hline 0.0 \ \text{to} \ 500.0 \ \mbox{\sc m} \\ \hline 0.0 \ \text{to} \ 500.0 \ \mbox{\sc m} \\ \hline 0.0 \ \text{to} \ 500.0 \ \mbox{\sc m} \\ \hline 0.0 \ \text{to} \ 500.0 \ \mbox{\sc m} \\ \hline 0.0 \ \text{to} \ 500.0 \ \mbox{\sc m} \\ \hline 0.0 \ \text{to} \ 500.0 \ \mbox{\sc m} \\ \hline 0.0 \ \text{to} \ 500.0 \ \mbox{\sc m} \\ \hline 0.0 \ \text{to} \ 500.0 \ \mbox{\sc m} \\ \hline 0.0 \ \mbox{\sc m} \ \mbox{\sc m} \\ \hline 0.0 \ \mbox{\sc m} \ \$	$\begin{array}{c} 0.0 \ \text{to} \ 50.0 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 50 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 0.200 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 0.200 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 0.500 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 5.00 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 5.00 \ \mu\text{S/cm} \\ \hline 0.000 \ \text{to} \ 5.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 5.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 5.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 5.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 5.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 5.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 5.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 5.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 5.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 5.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 5.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 0.500 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 0.500 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 5.00 \ \text{mS/m} \\ \hline 0.00 \ \text{to} \ 50.0 \ \text{mS/m} \\ \hline 0.0 \ \text{to} \ 50.0 \ \text{mS/m} \ \ 0.0 \ \ 0.0 \ \ 0.0 \ \ 0.0 \ \ 0.0 \ \ 0.0 \ \ 0.0 \ \ 0.0 \ \ 0.0 \ \ 0.0 \ \ 0.0 \ \ 0.0 \ \ 0.0 \ \ 0.0 \ \ 0.$			
		$\begin{array}{c} 0.0 \ {\rm to} \ 500.0 \ {\rm mS/cm} \\ \hline 0 \ {\rm to} \ 500 \ {\rm mS/cm} \\ \hline 0.000 \ {\rm to} \ 2.000 \ {\rm mS/cm} \\ \hline 0.000 \ {\rm to} \ 5.000 \ {\rm mS/cm} \\ \hline 0.000 \ {\rm to} \ 50.00 \ {\rm mS/cm} \\ \hline 0 \ {\rm to} \ 2000 \ \mu {\rm S/cm} \\ \hline 0 \ {\rm to} \ 2000 \ \mu {\rm S/cm} \\ \hline 0 \ {\rm to} \ 5000 \ \mu {\rm S/cm} \\ \hline 0.000 \ {\rm to} \ 5.000 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 2.000 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 5.000 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 5.000 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 5.000 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.000 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.000 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.000 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.000 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 5.000 \ {\rm S/m} \\ \hline 0.0 \ {\rm to} \ 5.000 \ {\rm S/m} \\ \hline 0.0 \ {\rm to} \ 5.000 \ {\rm S/m} \\ \hline 0.0 \ {\rm to} \ 5.000 \ {\rm S/m} \\ \hline 0.0 \ {\rm to} \ 5.000 \ {\rm S/m} \\ \hline 0.0 \ {\rm to} \ 5.000 \ {\rm mS/m} \\ \hline 0.0 \ {\rm to} \ 5.000 \ {\rm mS/m} \\ \hline 0.0 \ {\rm to} \ 5.00.0 \ {\rm mS/m} \\ \hline 0.0 \ {\rm mS/m} \ {\rm mS/m} \\ \hline 0.0 \ {\rm mS/m} \ {\rm mS/m} \ {\rm mS/m} \ \ {\rm mS/m} \$	0.0 to 50.0 mS/cm 0 to 50 mS/cm 0.000 to 0.200 mS/cm 0.000 to 0.500 mS/cm 0.00 to 5.00 mS/cm 0 to 200 μ S/cm 0 to 500 μ S/cm 0.000 to 0.200 S/m 0.000 to 2.00 S/m 0.00 to 5.00 S/m 0.00 to 20.0 mS/m 0.0 to 20.0 mS/m 0.0 to 50.0 mS/m 0.0 to 50.0 mS/m			
		$\begin{array}{c} 0.0 \ {\rm to} \ 500.0 \ {\rm mS/cm} \\ \hline 0 \ {\rm to} \ 500 \ {\rm mS/cm} \\ \hline 0.000 \ {\rm to} \ 2.000 \ {\rm mS/cm} \\ \hline 0.000 \ {\rm to} \ 5.000 \ {\rm mS/cm} \\ \hline 0.000 \ {\rm to} \ 5.000 \ {\rm mS/cm} \\ \hline 0.000 \ {\rm to} \ 50.00 \ {\rm mS/cm} \\ \hline 0 \ {\rm to} \ 2000 \ \mu {\rm S/cm} \\ \hline 0.000 \ {\rm to} \ 2.000 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 2.000 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 20.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.000 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.00 \ {\rm to} \ 50.00 \ {\rm S/m} \\ \hline 0.0 \ {\rm to} \ 200.0 \ {\rm mS/m} \\ \hline 0.0 \ {\rm to} \ 200.0 \ {\rm mS/m} \\ \hline 0.0 \ {\rm to} \ 200.0 \ {\rm mS/m} \\ \hline 0.0 \ {\rm to} \ 200.0 \ {\rm mS/m} \\ \hline 0.0 \ {\rm to} \ 200.0 \ {\rm mS/m} \\ \hline 0.0 \ {\rm to} \ 20.0 \ {\rm g/L} \\ \hline 0 \ {\rm to} \ 200 \ {\rm g/L} \\ \hline 0 \ {\rm to} \ 200 \ {\rm g/L} \end{array}$	0.0 to 50.0 mS/cm 0 to 50 mS/cm 0.000 to 0.200 mS/cm 0.000 to 0.500 mS/cm 0.00 to 5.00 mS/cm 0 to 200 µS/cm 0 to 500 µS/cm 0.000 to 0.200 S/m 0.000 to 2.00 S/m 0.00 to 5.00 S/m 0.00 to 5.00 S/m 0 to 200 mS/m 0.000 to 0.500 S/m 0.000 to 0.500 S/m 0.0 to 50.0 mS/m 0.0 to 20.0 g/L			
		$\begin{array}{c} 0.0 \ \text{to} \ 500.0 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 500 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 5.000 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 2000 \ \mu\text{S/cm} \\ \hline 0 \ \text{to} \ 2000 \ \mu\text{S/cm} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 20.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 5.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 5.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 5.000 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 5.000 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 5.000 \ \text{S/m} \\ \hline 0.0 \ \text{to} \ 5.000 \ \text{S/m} \\ \hline 0.0 \ \text{to} \ 5.000 \ \text{g/L} \\ \hline 0 \ \text{to} \ 2000 \ \text{g/L} \\ \hline 0 \ \text{to} \ 500 \ \text{g/L} \end{array}$	0.0 to 50.0 mS/cm 0 to 50 mS/cm 0.000 to 0.200 mS/cm 0.000 to 0.500 mS/cm 0.00 to 5.00 mS/cm 0 to 200 μ S/cm 0 to 500 μ S/cm 0.000 to 0.200 S/m 0.00 to 2.00 S/m 0.00 to 5.00 S/m 0.00 to 5.00 S/m 0.00 to 5.00 S/m 0.00 to 5.00 S/m 0.00 to 0.500 S/m 0.00 to 20.0 mS/m 0.0 to 20.0 mS/m 0.0 to 50.0 mS/m 0.0 to 20.0 mS/m 0.0 to 20.0 g/L 0 to 20 g/L 0 to 50 g/L			
		0.0 to 500.0 mS/cm 0 to 500 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm 0.00 to 50.00 mS/cm 0 to 2000 µS/cm 0 to 5000 µS/cm 0.000 to 2.000 S/m 0.000 to 50.00 S/m 0.00 to 50.00 mS/m 0.00 to 500.0 mS/m 0.0 to 200.0 g/L 0 to 200 g/L 0 to 500 g/L 0 to 500 g/L 0 to 2000 mg/L	0.0 to 50.0 mS/cm 0 to 50 mS/cm 0.000 to 0.200 mS/cm 0.000 to 0.500 mS/cm 0.00 to 5.00 mS/cm 0 to 200 µS/cm 0 to 500 µS/cm 0.000 to 0.200 S/m 0.000 to 2.00 S/m 0.00 to 5.00 S/m 0.00 to 5.00 S/m 0.00 to 5.0 S/m 0.00 to 5.0 S/m 0.000 to 0.500 S/m 0.000 to 0.500 S/m 0.00 to 20.0 mS/m 0.0 to 20.0 mS/m 0.0 to 20.0 mS/m 0.0 to 20.0 mS/m 0.0 to 2.0 g/L 0 to 20 g/L 0 to 50 g/L 0 to 200 mg/L			
		$\begin{array}{c} 0.0 \ \text{to} \ 500.0 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 500 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 5.000 \ \text{mS/cm} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{mS/cm} \\ \hline 0 \ \text{to} \ 2000 \ \mu\text{S/cm} \\ \hline 0 \ \text{to} \ 2000 \ \mu\text{S/cm} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 2.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 20.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 50.00 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 5.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 5.000 \ \text{S/m} \\ \hline 0.000 \ \text{to} \ 5.000 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 5.000 \ \text{S/m} \\ \hline 0.00 \ \text{to} \ 5.000 \ \text{S/m} \\ \hline 0.0 \ \text{to} \ 5.000 \ \text{S/m} \\ \hline 0.0 \ \text{to} \ 5.000 \ \text{g/L} \\ \hline 0 \ \text{to} \ 2000 \ \text{g/L} \\ \hline 0 \ \text{to} \ 500 \ \text{g/L} \end{array}$	0.0 to 50.0 mS/cm 0 to 50 mS/cm 0.000 to 0.200 mS/cm 0.000 to 0.500 mS/cm 0.00 to 5.00 mS/cm 0 to 200 μ S/cm 0 to 500 μ S/cm 0.000 to 0.200 S/m 0.00 to 2.00 S/m 0.00 to 5.00 S/m 0.00 to 5.00 S/m 0.00 to 5.00 S/m 0.00 to 5.00 S/m 0.00 to 0.500 S/m 0.00 to 20.0 mS/m 0.0 to 20.0 mS/m 0.0 to 50.0 mS/m 0.0 to 20.0 mS/m 0.0 to 20.0 g/L 0 to 20 g/L 0 to 50 g/L			

	Cell constant 10.0/cm:				
	Measurement Range	Setting Range			
	0.0 to 200.0 mS/cm	0.0 to 20.0 mS/cm			
	0.0 to 500.0 mS/cm	0.0 to 50.0 mS/cm			
	0 to 2000 mS/cm	0 to 200 mS/cm			
	0.00 to 20.00 S/m	0.00 to 2.00 S/m			
	0.00 to 50.00 S/m	0.00 to 5.00 S/m			
	0.0 to 200.0 S/m	0.0 to 20.0 S/m			
	0 to 200 g/L	0 to 20 g/L			
	0 to 500 g/L	0 to 50 g/L			
	0 to 2000 g/L	0 to 200 g/L			
	Seawater salinity 0.00 to 4.00%	0.00 to 0.40%			
	NaCl salinity 0.00 to 20.00%	0.00 to 2.00%			
	Temperature input				
	Measurement Range	Setting Range			
	0.0 to 100.0℃	0.0 to 10.0℃			
A High/Low		range low limit to Measurement range			
limits independent	high limit (*1)				
upper side span,	• Temperature input: 0.0 to 100.0°C	(*2)			
	(*1) Measurement unit and decimal point				
A High/Low limits independent	(*2) The placement of the decimal point d				
lower side span					
lower side spart					
A hysteresis	Setting range differs depending on <i>l</i>	Δ type and measurement range			
ADD hysteresis	Setting range differs depending on <i>i</i>	A type and measurement range.			
A hysteresis	Conductivity input	A type and measurement range.			
A hysteresis	Conductivity input Cell constant 1.0/cm				
A hysteresis	Conductivity input	A type and measurement range. Setting Range 0.01 to 2.00 mS/cm			
A D hysteresis	Conductivity input Cell constant 1.0/cm Measurement Range	Setting Range			
A hysteresis	Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm	Setting Range 0.01 to 2.00 mS/cm			
A hysteresis	Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm			
A hysteresis	Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm			
A hysteresis	Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0 to 500 mS/cm	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm			
A . hysteresis	Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0 to 500 mS/cm 0.000 to 2.000 mS/cm	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm			
A . hysteresis	Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0.000 to 5.000 mS/cm 0.000 to 5.000 mS/cm	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm			
A □ □ hysteresis	Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0.000 to 5000 mS/cm 0.000 to 5.000 mS/cm 0.00 to 50.00 mS/cm 0.00 to 50.00 mS/cm	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm 0.001 to 0.500 mS/cm 0.01 to 5.00 mS/cm			
A hysteresis	• Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0 to 500 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm 0.00 to 50.00 mS/cm 0 to 2000 µS/cm	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm 0.01 to 5.00 mS/cm 1 to 50.0 mS/cm 1 to 50.0 mS/cm			
A □ hysteresis	• Conductivity input Cell constant 1.0/cm <u>Measurement Range</u> 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0.000 to 5.000 mS/cm 0.000 to 5.000 mS/cm 0.00 to 50.00 mS/cm 0 to 2000 µS/cm 0 to 5000 µS/cm	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm 0.01 to 5.00 mS/cm 1 to 500 JS/cm			
A □ hysteresis	 Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0 to 500 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm 0.000 to 50.00 mS/cm 0.00 to 50.00 mS/cm 0.00 to 50.00 mS/cm 0 to 5000 µS/cm 0 to 5000 µS/cm 0 to 5000 µS/cm 0.000 to 2.000 S/m 	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm 0.01 to 5.00 mS/cm 1 to 500 mS/cm 0.01 to 5.00 mS/cm 1 to 500 JS/cm 0.001 to 0.200 S/m			
A hysteresis	 Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0 to 500 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm 0.000 to 5.000 mS/cm 0.00 to 50.00 mS/cm 0 to 2000 µS/cm 0 to 2000 µS/cm 0 to 5000 µS/cm 0 to 5000 µS/cm 0.000 to 2.000 S/m 0.00 to 20.00 S/m 	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm 0.01 to 5.00 mS/cm 1 to 200 µS/cm 1 to 500 mS/cm 0.01 to 5.00 µS/cm 0.001 to 0.200 S/m 0.01 to 2.00 S/m			
A □ hysteresis	 Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0 to 500 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm 0.000 to 5.000 mS/cm 0.00 to 50.00 s/m 0.00 to 50.00 S/m 0.00 to 50.00 S/m 	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm 0.01 to 5.00 mS/cm 1 to 500 J/S/cm 1 to 500 J/S/cm 0.001 to 0.200 S/m 0.01 to 2.00 S/m 0.01 to 5.00 S/m			
A □ hysteresis	• Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0.00 to 500.0 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm 0.000 to 50.00 mS/cm $0 \text{ to } 2000 \ \mu\text{S/cm}$ $0 \text{ to } 2000 \ \mu\text{S/cm}$ 0.000 to 2.000 S/m 0.000 to 2.000 S/m 0.00 to 50.00 S/m 0.00 to 50.00 S/m	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm 0.01 to 5.00 mS/cm 1 to 500 µS/cm 1 to 500 µS/cm 1 to 500 µS/cm 1 to 500 µS/cm 0.01 to 5.00 mS/cm 0.01 to 5.00 mS/cm 0.01 to 5.00 mS/cm 1 to 200 µS/cm 1 to 500 µS/cm 0.001 to 0.200 S/m 0.01 to 2.00 S/m 0.01 to 5.00 S/m 0.1 to 5.00 S/m 0.1 to 5.0 S/m			
A □ hysteresis	• Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0.00 to 500.0 mS/cm 0.000 to 2.000 mS/cm 0.000 to 2.000 mS/cm 0.000 to 50.00 mS/cm 0 to 2000 S/cm 0 to 2000 S/cm 0.000 to 2.000	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm 0.01 to 5.00 mS/cm 0.01 to 5.00 mS/cm 0.01 to 5.00 mS/cm 1 to 500 µS/cm 1 to 500 µS/cm 0.01 to 5.00 mS/cm 0.1 to 5.00 mS/m 0.1 to 5.00 mS/m 1 to 200 mS/m			
A □ hysteresis	• Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0.00 to 5000 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm 0.000 to 5.000 mS/cm $0 \text{ to } 2000 \ \mu\text{S/cm}$ $0 \text{ to } 2000 \ \mu\text{S/cm}$ 0.000 to 2.000 S/m 0.000 to 2.000 S/m 0.00 to 50.00 S/m 0.00 to 50.00 S/m 0.00 to 50.00 S/m 0.000 to 5.000 S/m 0.000 to 5.000 S/m 0.000 to 5.000 S/m	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm 0.01 to 5.00 mS/cm 1 to 500 J/S/cm 1 to 500 J/S/cm 1 to 500 J/S/cm 0.001 to 0.200 S/m 0.01 to 2.00 S/m 0.01 to 5.00 S/m 0.1 to 5.00 S/m 0.1 to 5.00 S/m 0.1 to 5.00 S/m 0.001 to 0.500 S/m			
A hysteresis	• Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0.00 to 5000 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm 0.000 to 5.000 mS/cm $0 \text{ to } 2000 \text$	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm 0.01 to 5.00 mS/cm 0.01 to 5.00 mS/cm 0.01 to 5.00 mS/cm 0.01 to 5.00 mS/cm 1 to 500 µS/cm 1 to 500 µS/cm 0.01 to 5.00 mS/cm 0.01 to 5.00 S/m 0.01 to 5.00 S/m 0.1 to 5.00 S/m 0.1 to 5.00 S/m 0.1 to 5.00 S/m 0.1 to 5.00 mS/m 0.1 to 5.00 mS/m 0.1 to 5.00 mS/m 0.1 to 5.00 mS/m 0.1 to 50.0 mS/m			
A □ hysteresis	• Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0.00 to 5000 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm 0.000 to 50.00 mS/cm $0 \text{ to } 2000 \ \mu\text{S/cm}$ $0 \text{ to } 2000 \ \mu\text{S/cm}$ 0.000 to 2.000 S/m 0.000 to 2.000 S/m 0.00 to 50.00 S/m 0.00 to 50.00 S/m 0.00 to 50.00 S/m 0.000 to 5.000 S/m 0.00 to 5.000 S/m 0.000 to 5.000 S/m 0.00 to 5.000 mS/m 0.00 to 50.00 mS/m 0.00 to 50.00 mS/m	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm 0.01 to 5.00 mS/m 0.01 to 5.00 S/m 0.1 to 5.0 S/m 0.1 to 5.0 S/m 0.1 to 20.0 mS/m 0.1 to 50.0 mS/m			
A □ hysteresis	• Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0.00 to 5000 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm 0.000 to 50.00 mS/cm 0 to 2000 S/cm 0 to 2000 S/cm 0 to 5000	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm 0.01 to 5.00 mS/cm 0.01 to 5.00 mS/cm 0.01 to 5.00 mS/cm 1 to 500 µS/cm 1 to 500 µS/cm 0.01 to 5.00 mS/cm 0.1 to 5.00 mS/m 0.1 to 5.00 mS/m 0.1 to 50.0 mS/m 0.1 to 50.0 mS/m 0.1 to 50.0 mS/m 0.1 to 50.0 mS/m 0.1 to 20.0 g/L 1 to 20 g/L			
A □ hysteresis	• Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0.00 to 500.0 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm 0.000 to 50.00 mS/cm 0 to 2000 S/cm 0 to 2000 S/cm 0.000 to 2.000	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm 0.001 to 5.00 mS/cm 0.01 to 5.00 mS/cm 1 to 500 J/S/cm 1 to 500 J/S/cm 1 to 500 J/S/cm 0.001 to 0.200 S/m 0.01 to 5.00 S/m 0.01 to 5.00 S/m 0.1 to 20.0 mS/m 0.1 to 20.0 g/L 1 to 20 g/L 1 to 20 g/L 1 to 50 g/L			
A □ hysteresis	 Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0.000 to 5000 mS/cm 0.000 to 5.000 mS/cm 0.000 to 50.00 mS/cm 0.00 to 50.00 mS/cm 0 to 2000 µS/cm 0 to 2000 µS/cm 0 to 5000 µS/cm 0.00 to 50.00 S/m 0.00 to 50.00 mS/cm 0 to 2000 mS/m 0.00 to 50.00 S/m 0.00 to 50.00 S/m 0.00 to 50.00 S/m 0.00 to 50.00 S/m 0.00 to 50.00 mS/cm 0.00 to 50.00 mS/cm 0.00 to 50.00 mS/m 0.0 to 20.00 mS/m 	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm 0.01 to 5.00 mS/m 0.1 to 5.00 mS/m 0.1 to 5.00 mS/m 0.1 to 50.0 mS/m 0.1 to 50.0 mS/m 0.1 to 50.0 mS/m 0.1 to 2.0 g/L 1 to 20 g/L 1 to 50 g/L 1 to 200 mg/L			
A □ hysteresis	• Conductivity input Cell constant 1.0/cm Measurement Range 0.00 to 20.00 mS/cm 0.0 to 200.0 mS/cm 0.0 to 500.0 mS/cm 0.00 to 500.0 mS/cm 0.000 to 2.000 mS/cm 0.000 to 5.000 mS/cm 0.000 to 50.00 mS/cm 0 to 2000 S/cm 0 to 2000 S/cm 0.000 to 2.000	Setting Range 0.01 to 2.00 mS/cm 0.1 to 20.0 mS/cm 0.1 to 50.0 mS/cm 1 to 50 mS/cm 0.001 to 0.200 mS/cm 0.001 to 0.500 mS/cm 0.001 to 5.00 mS/cm 0.01 to 5.00 mS/cm 1 to 500 J/S/cm 1 to 500 J/S/cm 1 to 500 J/S/cm 0.001 to 0.200 S/m 0.01 to 5.00 S/m 0.01 to 5.00 S/m 0.1 to 20.0 mS/m 0.1 to 20.0 g/L 1 to 20 g/L 1 to 20 g/L 1 to 50 g/L			

	Cell constant 10.0/cm:				
	Measuremen		Setting Range		
	0.0 to 200.0 mS/cm	<u> </u>	0.1 to 20.0 mS/cm		
	0.0 to 500.0 mS/cm		0.1 to 50.0 mS/cm		
	0 to 2000 mS/cm		1 to 200 mS/cm		
	0.00 to 20.00 S/m		0.01 to 2.00 S/m		
	0.00 to 50.00 S/m		0.01 to 5.00 S/m		
	0.0 to 200.0 S/m		0.1 to 20.0 S/m		
	0 to 200 g/L		1 to 20 g/L		
	0 to 500 g/L		1 to 50 g/L		
	0 to 2000 g/L		1 to 200 g/L		
	Seawater salinity 0.0	0 to 4 00%	0.01 to 0.40%		
	NaCl salinity 0.00 to 2		0.01 to 2.00%		
	Temperature input		0.01 10 2.00 //		
	Measuremen		Setting Range		
	0.0 to 100.0℃		0.1 to 10.0℃		
ADD Type	One type can be sele	ected from the fol	llowing via the keypad.		
	No action				
	Conductivity input low limit action				
	Conductivity input h	igh limit action			
	Temperature input low limit action				
	Temperature input high limit action				
		••	pe is "Error" (p.72), the output is turned ON.]		
		••	•		
	Conductivity input H	-			
	Temperature input H	ligh/Low limits ir			
Output	Relay contact, 1a	1			
	Control capacity	3A 250 V AC (
		· · · · · ·	Inductive load cos¢=0.4) s		
	Electrical life	100,000 cycles			
A ON delay	0 to 9999 seconds				
time	0 to 9999 seconds				
A□□ OFF delay time	0 10 9999 Seconds				
A1, A2 output	Ear A1 (ar A2) autput	A11 tupo A12 t	vina A21 turna and/ar A22 turna can ba		
allocations	For A1 (or A2) output, A11 type, A12 type, A21 type and/or A22 type can be allocated. Output is OR output.				
Output ON time/			set, A1 (or A2) output can be turned		
OFF time when					
A1/A2 output ON	ON/OFF in a configured cycle when A1 (or A2) output is ON.				
Conductivity input	Detects actuator trou	hle			
error alarm			time has elapsed, and if conductivity		
		•	conductivity input error alarm band, the has occurred, and writes Status flag 2		
	•	•			
	(A1, A2 conductivity i		•		
		-	be read by reading Status flag 2 (A1		
	A2 conductivity input				
		for alarm is disa	bled during Conductivity Zero or Spar		
	adjustment.	ror alarm ia ana	bled only when $\mathcal{E}_{\mathcal{L}} = \mathcal{L}$ (Conductivity		
			conductivity input high limit action) is		
1	selected in [A11, A12	, A21, A22 type ((pp.22, 23)].		

Transmission Output 1 (Option Code: TA)

ransmission Output 1 (O					
Transmission Output 1	Converting conductivity or temperature to analog signal every input				
	sampling period, and outputs the value in current.				
If $\Box F F \square$ (No temperature compensation) is selected in [Temperature					
compensation method (p.30)], and if $\Gamma E \overline{\sigma} P$ (Temperature transmissi					
	is selected in [Transmission output 1 type (p.32)], Transmission output 1				
	value will differ depen	ding on the selection in [Temperature Display when			
	no temperature comp	ensation (p.34)] as follows.			
	・If <i>ュ F F</i> (Unlit) o	or $\neg f \exists \square$ (Reference temperature) is selected, the			
	value set in [Refer	ence temperature (p.30)] will be output.			
	• If <i>PB</i> (Measu	red value) is selected, the measured value will be			
	output.				
	If Transmission output	t 1 high limit and low limit are set to the same value,			
	Transmission output 1	I will be fixed at 4 mA DC.			
	Resolution	12000			
	Current	4 to 20 mA DC (Load resistance: Max. 550 Ω)			
	Output accuracy	Within ±0.3% of Transmission output 1 span			
Transmission	Fine adjustment of the	e Transmission output 1 can be performed via			
output 1 adjustment	Transmission output 1	Zero and Span adjustments.			
Transmission	Selects Transmission	output 1 status when calibrating conductivity.			
output 1 status	Last value HOLD	Retains the last value before conductivity			
when calibrating		calibration, and outputs it.			
	Set value HOLD	Outputs the value set in [Transmission output 1 value			
		HOLD when calibrating].			
	Measured value	Outputs the measured value when calibrating			
		conductivity.			

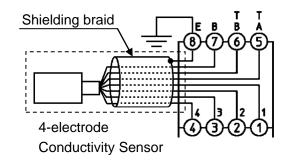
Transmission Output 2 (Option Code: TA2)

Transmission Output 2	Converting conductivity or temperature to analog signal every input			
	sampling period, and outputs the value in current.			
	If $\Box F F \square$ (No temperature compensation) is selected in [Temperature			
	· · ·	pd (p.30)], and if $\int \mathcal{E} \vec{a} \mathcal{P}$ (Temperature transmission)		
	-	mission output 2 type (p.32)], Transmission output 2		
	-	nding on the selection in [Temperature Display when		
	no temperature com	pensation (p.34)] as follows.		
		br $\neg f d \square$ (Reference temperature) is selected, the		
		ence temperature (p.30)] will be output.		
	• If <i>PB</i> (Measu	red value) is selected, the measured value will be		
	output.			
	If Transmission output 2 high limit and low limit are set to the same value,			
	Transmission output 2	2 will be fixed at 4 mA DC.		
	Resolution	12000		
	Current	4 to 20 mA DC (Load resistance: Max. 550 Ω)		
	Output accuracy	Within ±0.3% of Transmission output 2 span		
Transmission	Fine adjustment of the	e Transmission output 2 can be performed via		
output 2 adjustment	Transmission output 2	2 Zero and Span adjustments.		
Transmission	Selects Transmission	output 2 status when calibrating conductivity.		
output 2 status	Last value HOLD	Retains the last value before conductivity		
when calibrating		calibration, and outputs it.		
	Outputs the value set in [Transmission output 2 value			
		HOLD when calibrating].		
	Measured value	Outputs the measured value when calibrating		
		conductivity.		

13. Troubleshooting

If any malfunction occurs, refer to the following items after checking that power is being supplied to the WIL-102-ECH.

13.1 Indication


Problem	Possible Cause	Solution
The Conductivity/	nonE (No Indication) is selected	Select RLL (Conductivity/
Temperature Display is	in [Display selection (p.34)].	Temperature).
unlit.	The time set in [Indication time	If any key is pressed while displays
	(p.34)] has passed.	are unlit, they will re-light.
		Set the indication time to a suitable
		time-frame.
The Conductivity/	$L \neg E$ (Enabled) is selected in	Select (Disabled).
Temperature Display is dark.	[Auto-light function (p.34)].	
Indication of the	Conductivity calibration and	Perform conductivity calibration
Conductivity/Temperature	temperature calibration may not	and temperature calibration.
Display is unstable or	have finished.	
irregular.	Specifications of 4-electrode	Replace the sensor with a
	Conductivity Sensor may not be	suitable one.
	suitable.	
	There may be equipment that	Keep WIL-102-ECH clear of any
	interferes with or makes noise near	potentially disruptive equipment.
	the WIL-102-ECH.	Try [Grounding of shield wire
		terminal (E)].
Temperature Display is	$\Box \mathcal{F} \mathcal{F} \square$ (Unlit) is selected in	Select '¬/ = (Reference
unlit.	[Temperature Display when no	temperature) or <i>PB</i>
	temperature compensation (p.34)].	(Measured value).
$[E - \overline{G} \]$ is flashing on the	The temperature sensor lead wire	Replace the temperature sensor.
Temperature Display.	is burnt out.	
$[\mathcal{E} \cap \mathcal{D}\mathcal{E}]$ is flashing on the	The temperature sensor lead wire	Replace the temperature sensor.
Temperature Display.	is short-circuited.	
$[\mathcal{E} \cap \mathcal{D}\mathcal{B}]$ is flashing on the	Measured temperature has	Check the environment of
Temperature Display.	exceeded 110.0℃.	measurement location.
$[\mathcal{E} \cap \mathcal{D}^{\mathcal{H}}]$ is flashing on the	Measured temperature is less than	Check the environment of
Temperature Display.	0.0°C.	measurement location.
$[\mathcal{E} \neg \neg i]$ is indicating on	Internal memory is defective.	Contact our agency or us.
the Conductivity Display.		

• Grounding of shield wire terminal (E)

If the indication fluctuates due to noise, ground the shield wire terminal (E).

However, depending on the installation environment, the symptom may not be improved.

In this case, disconnect the grounding of the shield wire terminal (E) and return it to the original state. (Depending on the type of sensor, the cable for the shield wire terminal (E) may not be available.)

13.2 Key Operation

Problem	Possible Cause	Solution		
None of the set values can	Loc 1 (Lock 1) is selected in [Set	Select (Unlock).		
be changed.	value lock (p.31)].			
The values do not change				
by the \bigtriangleup , \bigtriangledown keys.				
Only A \Box value can be	$L \Box \subset \overline{C}$ (Lock 2) is selected in [Set	Select (Unlock).		
set. Other settings are	value lock (p.31)].			
impossible.				
The values do not change				
by the \bigtriangleup , \bigtriangledown keys.				

13.3 Calibration

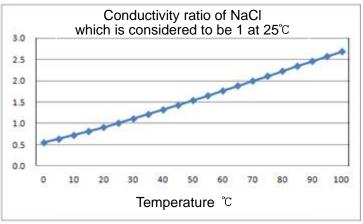
Problem	Possible Cause	Solution
Span adjustment does not work or does not work well	Is Zero adjustment being erformed with the 2-electrode Conductivity Sensor immersed in the standard solution?	Perform Zero adjustment without immersing the sensor in the standard
	Solution?	solution. • Clear the adjustment by hanging the cell constant (p.20), measurement unit (p.20), and measurement range (p.21) of the sensor, and then perform re-calibration.

13.4 Communication

Check that power is being supplied to the master and slave that customers use. If communication failure still occurs, check the following.

Problem	Possible Cause	Solution
Communication failure	Communication cable is not securely connected, or is disconnected/defective.	Check the communication cable and connector.
	Incorrect wiring of the communication cable and/or connector	Check the communication cable and connector.
	Imperfect contact between the communication cable and the connector, or between the communication connector and instrument port	Check the communication cable and connector.
	Communication speed of the slave does not match that of the master.	Check the communication speed of the slave and master.
	The data bit, parity and stop bit of the master do not correspond to those of the slave.	Check the data bit, parity and stop bit of the master and the slave.
	The instrument number (address) of the slave does not correspond to that of the command.	Check the instrument number (address) of the slave and command.
	The instrument numbers (addresses) are duplicated in multiple slaves.	Check the instrument numbers (addresses) of the slave.
	Make sure that the program is appropriate for the transmission timing.	Check the program.
Although communication is occurring, the response	A non-existent command code has been sent.	Check the command code.
is negative acknowledge- ment.	The setting command data exceeds the setting range of the slave.	Check the setting range of the slave.
	The WIL-102-ECH cannot be set during calibration mode.	Check the slave status.
	The WIL-102-ECH is in the front keypad operation setting mode.	Return the unit to Conductivity/ Temperature Display Mode.

14. Temperature Compensation Method


14.1 Temperature Compensation Based on the Temperature Characteristics of NaCI

When the main ingredient of the salt contained in a sample is NaCl, use temperature compensation method based on the temperature characteristics of NaCl.

Conductivity of NaCl solution varies with the ratio based on the conductivity at 25° C as shown below. The conductivity at 25° C is calculated on the basis of the conductivity ratio at each temperature in (Table 14.1-1).

Tempera-	Conductivity	Coeffi-
ture (°C)	ratio of NaCI	cient
0	0.542	1.845
5	0.626	1.596
10	0.715	1.399
15	0.806	1.240
20	0.902	1.109
25	1.000	1.000
30	1.101	0.908
35	1.205	0.830
40	1.312	0.762
45	1.420	0.704
50	1.531	0.653
55	1.643	0.609
60	1.757	0.569
65	1.872	0.534
70	1.987	0.503
75	2.103	0.476
80	2.219	0.451
85	2.335	0.428
90	2.450	0.408
95	2.564	0.390
100	2.677	0.374

(Table 14.1-1)

(Fig.14.1-1)

14.2 How to Input Temperature Coefficient

Temperature compensation is conducted using temperature coefficient (%/ $^{\circ}$ C) and a randomly selected reference temperature.

Conductivity of the solution varies depending on the temperature.

If temperature rises by 1°C, the conductivity rises by 2% at 25°C basis in general.

Temperature coefficient differs depending on the solution type and its concentration, which ranges from 0.50 to 2.50.

By inputting the temperature coefficient, temperature compensation can be calculated to find the conductivity at 25°C.

Temperature coefficient 2.00 %/°C can be used for most of solutions.

If temperature coefficient of solution is already-known, enter the value. (Table 14.2-1)

If the conductivity at an arbitrary temperature $T^{\circ}C$ is already-known, and if reference temperature is $ST^{\circ}C$, conductivity $C_{(ST)}$ at the reference temperature can be obtained according to the following formula.

$$C_{(ST)} = \frac{C_{(T)}}{(1 + 0.01 \times \alpha \times (T - ST))}$$

 $C_{(ST)}$: Conductivity of the solution at ST[°]C

 $C_{(T)}$: Conductivity of the solution at T[°]C

- α : Temperature coefficient of conductivity (%)
- *T*: Arbitrary temperature $T^{\circ}C$
- ST: Reference temperature ST[℃]

T-LL		A A A
(Table	2 14.2	2-1)

(12	able 14.2	-	Candua	Tamporofuro		Tompo	Concon	Conduo	Tommoroturo	
Sub-	Tempe- rature	Concen-	Conduc-	Temperature coefficient	Sub-	Tempe-	Concen-	Conduc-	Temperature coefficient	
stance	rature (℃)	tration Wt%	tivity S/m	(%/℃)	stance	rature (℃)	tration Wt%	tivity S/m	(%/℃)	
		5	19.69	2.01			<u> </u>	6.72	2.17	
		10	31.24	2.17	NaCl	10	<u>10</u> 15	12.11	2.14 2.12	
NaOH	15	15	34.63	2.49	NaCl	18		16.42		
		20	32.70	2.99			20	19.57	2.16	
		30	20.22	4.50			25	21.35	2.27	
		40	11.64	6.48		10	5	4.09	2.36	
		25.2	54.03	2.09	Na ₂ SO ₄	18	10	6.87	2.49	
КОН	15	29.4	54.34	2.21			15	8.86	2.56	
		33.6	52.21	2.36		10	5	4.56	2.52	
		42	42.12	2.83	Na ₂ CO ₃ 18	18	10	7.05	2.71	
		0.1	0.0251	2.46			15	8.36	2.94	
	. –	1.6	0.0867	2.38			5	6.90	2.01	
NH ₃	15	4.01	0.1095	2.50			10	13.59	1.88	
		8.03	0.1038	2.62	KCI	18	15	20.20	1.79	
		16.15	0.0632	3.01			20	26.77	1.68	
		1.5	1.98	0.72			21	28.10	1.68	
HF	18	4.8	5.93	0.66			5	4.65	2.06	
		24.5	28.32	0.58	KBr	15	10	9.28	1.94	
		5	39.48	1.58			20	19.07	1.77	
HCI	18	10	63.02	1.56		KCN 15	3.25	5.07	2.07	
1101	10	20	76.15	1.54	KCN		6.5	10.26	1.98	
		30	66.20	1.52			-	-	-	
		5	20.85	1.21			5	9.18	1.98	
		10	39.15	1.28			10	17.76	1.86	
		20	65.27	1.45	NH ₄ CI	18	15	25.86	1.71	
		40	68.00	1.78			20	33.65	1.61	
H_2SO_4	18	50	54.05	1.93			25	40.25	1.54	
		60	37.26	2.13			5	5.90	2.03	
		80	11.05	3.49	NH4NO3		IO ₃ 15	10	11.17	1.94
		100.14	1.87	0.30	111141103	15	30	28.41	1.68	
		-	I	-			50	36.22	1.56	
		6.2	31.23				2.5	10.90	2.13	
		12.4	54.18		CuSO₄	10	5	18.90	2.16	
HNO ₃	18	31	78.19			18	10	32.00	2.18	
		49.6	63.41				15	42.10	2.31	
		62	49.64				10	15.26	1.69	
		10	5.66				15	16.19	1.74	
		20	11.29			10	20	16.05	1.79	
H ₃ PO ₄	15	40	20.70		- CH3COOH	CH₃COOH	18	30	14.01	1.86
		45	20.87				40	10.81	1.96	
		50	20.73				60	4.56	2.06	

15. Character Tables

The following shows our character tables. Use data column for your reference.

Setting Groups

Character	Setting Group	
F.nc. I	Conductivity Input Group	
F.nc.2	Temperature Input Group	
alī.E.r	Basic Function Group	

Temperature Calibration Mode

Character	Setting Item, Setting Range	Factory Default	Data
トロ (*)	Temperature calibration	0.0°C	
00	Setting range: -10.0 to 10.0℃		

(*) '- D and temperature are displayed alternately.

Conductivity Calibration Mode

Character	Setting Item, Setting Range Factory Default		Data
RdJΞ(*1)	Conductivity Zero adjustment value	0.00	
000	See (Table 15-1). (pp.81, 82)		
<i>吊占</i> 」ら(*2)	Conductivity Span adjustment value	1.000	
1000	Setting range: 0.700 to 1.300		

(*1) $\frac{8}{2}$ d $\frac{1}{2}$ and conductivity are displayed alternately.

(*2) $\mathcal{F}_{\mathcal{A}} \mathcal{L}_{\mathcal{A}}$ and conductivity are displayed alternately.

(Table 15-1)

Meas	urement Range	Conductivity Zero Adjustment Value Setting Range
	0.00 to 20.00 mS/cm	-2.00 to 2.00 mS/cm
	0.0 to 200.0 mS/cm	-20.0 to 20.0 mS/cm
	0.0 to 500.0 mS/cm	-50.0 to 50.0 mS/cm
	0 to 500 mS/cm	-50 to 50 mS/cm
	0.000 to 2.000 mS/cm	-0.200 to 0.200 mS/cm
	0.000 to 5.000 mS/cm	-0.500 to 0.500 mS/cm
	0.00 to 50.00 mS/cm	-5.00 to 5.00 mS/cm
	0 to 2000 µS/cm	-200 to 200 µS/cm
	0 to 5000 μ S/cm	-500 to 500 µS/cm
Call	0.000 to 2.000 S/m	-0.200 to 0.200 S/m
Cell constant	0.00 to 20.00 S/m	-2.00 to 2.00 S/m
1.0/cm	0.00 to 50.00 S/m	-5.00 to 5.00 S/m
1.0/011	0.0 to 50.0 S/m	-5.0 to 5.0 S/m
	0 to 2000 mS/m	-200 to 200 mS/m
	0.000 to 5.000 S/m	-0.500 to 0.500 S/m
	0.0 to 200.0 mS/m	-20.0 to 20.0 mS/m
	0.0 to 500.0 mS/m	-50.0 to 50.0 mS/m
	0.0 to 20.0 g/L	-2.0 to 2.0 g/L
	0 to 200 g/L	-20 to 20 g/L
	0 to 500 g/L	-50 to 50 g/L
	0 to 2000 mg/L	-200 to 200 mg/L
	0 to 5000 mg/L	-500 to 500 mg/L

0.0 to 200.0 mS/cm	-20.0 to 20.0 mS/cm
0.0 to 500.0 mS/cm	-50.0 to 50.0 mS/cm
0 to 2000 mS/cm	-200 to 200 mS/cm
0.00 to 20.00 S/m	-2.00 to 2.00 S/m
0.00 to 50.00 S/m	-5.00 to 5.00 S/m
0.0 to 200.0 S/m	-20.0 to 20.0 S/m
0 to 200 g/L	-20 to 20 g/L
0 to 500 g/L	-50 to 50 g/L
0 to 2000 g/L	-200 to 200 g/L
nity 0.00 to 4.00%	-0.40 to 0.40%
).00 to 20.00%	-2.00 to 2.00%
	0.0 to 500.0 mS/cm 0 to 2000 mS/cm 0.00 to 20.00 S/m 0.00 to 50.00 S/m 0.0 to 200.0 S/m 0 to 200 g/L 0 to 500 g/L 0 to 2000 g/L nity 0.00 to 4.00%

Transmission Output 1 Adjustment Mode

Character	Setting Item, Setting Range	Factory Default	Data
RJEI	Transmission output 1 Zero	0.00%	
000	adjustment value		
	Setting range: ±5.00% of Transmission	output 1 span	
នារាក (Transmission output 1 Span	0.00%	
	adjustment value		
	Setting range: ±5.00% of Transmission	output 1 span	

Transmission Output 2 Adjustment Mode

Character	Setting Item, Setting Range	Factory Default	Data
RJE2	Transmission output 2 Zero	0.00%	
000	adjustment value		
	Setting range: ±5.00% of Transmission	output 2 span	
RJ42	Transmission output 2 Span	0.00%	
000	adjustment value		
	Setting range: ±5.00% of Transmission	output 2 span	

Conductivity Input Group

Character	Setting Item, Setting Range	Factory Default	Data
c E L L	Sensor cell constant	1.0/cm	
l	Selection item:		
	🗔 🖾 : 1.0/cm		
	<i>□ IΩ□</i> : 10.0/cm		
co£F	Cell constant correction value	1.000	
1000	Setting range: 0.001 to 5.000		
Uni F	Measurement unit	Conductivity (mS/cm, μ S/cm)	
conð	Selection item:		
	<i>டிப்ப</i> ி: Conductivity (mS/cm, <i>µ</i> S/cm)		
	'∽' Conductivity (S/m, mS/m)		
	<i>与EB</i> □: Seawater salinity (%)		
	<i>与吊に「</i> :NaCI salinity (%)		
	「 ゴ ′¬□ : TDS conversion (g/L, mg/L)		

Character	Setting Item, Setting	g Range	Factory Default	Data	
nen <u>5</u>	Measurement range		20.00 mS/cm		
2000	(Table 15-2)				
	When sensor cell cor	nstant 1.0/cm	n is selected:		
		Selection			
	Measurement Unit	item	Measurement Range		
		2000	0.00 to 20.00 mS/cm		
		2000	0.0 to 200.0 mS/cm		
		5000	0.0 to 500.0 mS/cm		
		500	0 to 500 mS/cm		
	Conductivity	2.000	0.000 to 2.000 mS/cm		
	(mS/cm, μ S/cm)	5000	0.000 to 5.000 mS/cm		
		5000	0.00 to 50.00 mS/cm		
		2000	0 to 2000 <i>µ</i> S/cm		
		5000	0 to 5000 <i>µ</i> S/cm		
		2.000	0.000 to 2.000 S/m		
		2000	0.00 to 20.00 S/m		
		5000	0.00 to 50.00 S/m		
	Conductivity	500	0.0 to 50.0 S/m		
	(S/m, mS/m)	2000	0 to 2000 mS/m		
		5000	0.000 to 5.000 S/m		
		2000	0.0 to 200.0 mS/m		
		5000	0.0 to 500.0 mS/m		
		200	0.0 to 20.0 g/L		
		200	0 to 200 g/L		
	TDS conversion	500	0 to 500 g/L		
	(g/L, mg/L)	2000	0 to 2000 mg/L		
		5000	0 to 5000 mg/L		
	Seawater salinity (%)		0.00 to 4.00%		
	NaCl salinity (%)	2000	0.00 to 20.00%		
			•		
	When sensor cell constant 10.0/cm is selected:				
	Measurement Unit	Selection item	Measurement Range		
		2000	0.0 to 200.0 mS/cm		
		5000	0.0 to 500.0 mS/cm		
	(mS/cm)	2000	0 to 2000 mS/cm		
		2000	0.00 to 20.00 S/m		
	Conductivity	5000	0.00 to 50.00 S/m		
	(S/m, mS/m)	2000	0.0 to 200.0 S/m		
		200	0 to 200 g/L		
	TDS conversion	500	0 to 500 g/L		
	(g/L)	2000	0 to 2000 g/L		
	Seawater salinity (%)	<u> </u>	0.00 to 4.00%		
	NaCl salinity (%)	2000	0.00 to 20.00%		
Гдче	TDS conversion factor		0.50		
050	Setting range: 0.30 to	1 00			
		1.00			

Character	Setting Item, Setting Range	Factory Default	Data
RIIF	A11 type	No action	
	Selection item:		
	: No action		
	E = L: Conductivity input low limit ac		
	$E \subseteq H$: Conductivity input high limit a		
	$\int \bar{\alpha} P L$: Temperature input low limit as		
	ビニアH : Temperature input high limit a Eヶロデ : Err output	icuon	
	FRIL: Fail output		
	$\mathcal{E}_{\mathcal{E}} \mathcal{H}_{\mathcal{L}}$: Conductivity input High/Low li	mits independent action	
	「 ーーーー : Temperature input High/Low I		
R 12F	A12 type	No action	
[-[-[-]	Selection item: Same as those of A11 t	ype (p.84)	
R2 IF	A21 type	No action	
	Selection item: Same as those of A11 t	ype (p.84)	
RZZF	A22 type	No action	
	Selection item: Same as those of A11 t	ype (p.84)	
811	A11 value	Conductivity input: 0.00 mS/cm	
000		Temperature input: 0.0℃	
	Setting range:		
	Conductivity input: Measurement range low limit to Meas	urement range high limit (*1)	
	Temperature input:		
	0.0 to 100.0°C (*2)		
R 12	A12 value	Conductivity input: 0.00 mS/cm	
000		Temperature input: 0.0℃	
	Setting range: Same as those of A11 va	alue (p.84)	
R2 I	A21 value	Conductivity input: 0.00 mS/cm	
000		Temperature input: 0.0℃	
	Setting range: Same as those of A11 value (p.84)		
822	A22 value	Conductivity input: 0.00 mS/cm	
000		Temperature input: 0.0℃	
<u> </u>	Setting range: Same as those of A11 va		
R I Id	A11 hysteresis type	Reference value	
Sdi F	Selection item:		
	<i>っぱ ^に</i> : Reference value		

(*1) The measurement unit and decimal point place follow the measurement range.

(*2) The placement of the decimal point does not follow the selection. It is fixed.

Character	Setting It	em, Setting Range	Factory Default	Data
8110	A11 ON side		Conductivity input: 0.01 mS/cm	
<u> </u>			Temperature input: 1.0℃	
	(Table 15-3)			
	Conductivit			
	Mea	asurement Range	Setting Range	
		0.00 to 20.00 mS/cm	0.00 to 2.00 mS/cm	
		0.0 to 200.0 mS/cm	0.0 to 20.0 mS/cm	
		0.0 to 500.0 mS/cm	0.0 to 50.0 mS/cm	
		0 to 500 mS/cm	0 to 50 mS/cm	
		0.000 to 2.000 mS/cm	0.000 to 0.200 mS/cm	
		0.000 to 5.000 mS/cm	0.000 to 0.500 mS/cm	
		0.00 to 50.00 mS/cm 0 to 2000 <i>µ</i> S/cm	0.00 to 5.00 mS/cm 0 to 200 <i>µ</i> S/cm	
		0 to 5000 µS/cm	0 to 500 µS/cm	
		0.000 to 2.000 S/m	0.000 to 0.200 S/m	
	Cell	0.00 to 20.00 S/m	0.00 to 2.00 S/m	
	constant	0.00 to 50.00 S/m	0.00 to 5.00 S/m	
	1.0/cm	0.0 to 50.0 S/m	0.0 to 5.0 S/m	
		0 to 2000 mS/m	0 to 200 mS/m	
		0.000 to 5.000 S/m	0.000 to 0.500 S/m	
		0.0 to 200.0 mS/m	0.0 to 20.0 mS/m	
		0.0 to 500.0 mS/m	0.0 to 50.0 mS/m	
		0.0 to 20.0 g/L	0.0 to 2.0 g/L	
		0 to 200 g/L	0 to 20 g/L	
		0 to 500 g/L	0 to 50 g/L	
		0 to 2000 mg/L	0 to 200 mg/L	
		0 to 5000 mg/L	0 to 500 mg/L	
		0.0 to 200.0 mS/cm	0.0 to 20.0 mS/cm	
		0.0 to 500.0 mS/cm	0.0 to 50.0 mS/cm	
		0 to 2000 mS/cm	0 to 200 mS/cm	
	Cell	0.00 to 20.00 S/m	0.00 to 2.00 S/m	
	constant	0.00 to 50.00 S/m	0.00 to 5.00 S/m	
	10.0/cm	0.0 to 200.0 S/m	0.0 to 20.0 S/m	
		0 to 200 g/L	0 to 20 g/L	
		0 to 500 g/L	0 to 50 g/L	
	Sociator	0 to 2000 g/L calinity 0.00 to 4.00%	0 to 200 g/L 0.00 to 0.40%	
		ty 0.00 to 20.00%	0.00 to 2.00%	
		*	0.00 10 2.00 //	
	Temperatur	•	Sotting Pango	
	0.0 to 100.	asurement Range	Setting Range 0.0 to 10.0℃	
	0.0 10 100.		0.0 10 10.0 0	
RIIL	A11 OFF side	Conductivity input: 0.01	mS/cm, Temperature input: 1.0°C	
I	Setting range	e: Same as those of A11 (DN side (p.85)	
R 12d	A12 hysteresi	s type	Reference value	
Sdi F	Selection ite	m: Same as those of A11	hysteresis type (p.84)	
R IZU	A12 ON side		mS/cm, Temperature input: 1.0°C	
		e: Same as those of A11 (
R IZL			mS/cm, Temperature input: 1.0°C	
<u> </u>	Setting range A21 hysteresi	e: Same as those of A11 (ON side (P.85) Reference value	
ne io Sdl F	•	m: Same as those of A11		
	Selection ite	m. Same as mose of ATT	nysieresis iype (p.o4)	

Character	Setting Item, Setting Range	Factory Default	Data
R2 IU		mS/cm, Temperature input: 1.0°C	
	Setting range: Same as those of A11 C	· · ·	
RZ IL	A21 OFF side Conductivity input: 0.01		
	Setting range: Same as those of A11 C		
8228	A22 hysteresis type	Reference value	
5d: F	Selection item: Same as those of A11		
N22U		mS/cm, Temperature input: 1.0°C	
	Setting range: Same as those of A11 C		
822L	A22 OFF side Conductivity input: 0.01	u /	
R I Io	Setting range: Same as those of A11 C		
	A11 ON delay time	0 seconds	
R 120	Setting range: 0 to 9999 seconds		
	A12 ON delay time	0 seconds	
	Setting range: 0 to 9999 seconds		
82 lo	A21 ON delay time	0 seconds	
	Setting range: 0 to 9999 seconds		
8220	A22 ON delay time	0 seconds	
	Setting range: 0 to 9999 seconds		
$B \mid I_{c}$	A11 OFF delay time	0 seconds	
0	Setting range: 0 to 9999 seconds		
8 12c	A12 OFF delay time	0 seconds	
0	Setting range: 0 to 9999 seconds		
82 Ic	A21 OFF delay time	0 seconds	
<i>0</i>	Setting range: 0 to 9999 seconds		
<i>822c</i>	A22 OFF delay time	0 seconds	
<i>0</i>	Setting range: 0 to 9999 seconds		
8 I In	A11 High/Low limits independent	Conductivity input: 0.00 mS/cm	
0	lower side span Conductivity input: Measurement range	Temperature input: 0.0°C	
	Measurement rang		
	Temperature input: 0.0 to 100.0℃ (*2)	5 ()	
בים	A12 High/Low limits independent	Conductivity input: 0.00 mS/cm	
8 12n	lower side span Setting range: Same as those of A11 F	Temperature input: 0.0°C	
	lower side span (p.86)		
	A21 High/Low limits independent	Conductivity input: 0.00 mS/cm	
82 In	lower side span	Temperature input: 0.0℃	
000	Setting range: Same as those of A11 H	ligh/Low limits independent	
	lower side span (p.86) A22 High/Low limits independent	Conductivity input: 0.00 mS/cm	
822n	lower side span	Temperature input: 0.0°C	
00	Setting range: Same as those of A11 F		
	lower side span (p.86)	Open divertinity in the open of	
A P	A11 High/Low limits independent upper side span	Conductivity input: 0.00 mS/cm Temperature input: 0.0℃	
	Conductivity input: Measurement range		
	Measurement rang		
	Temperature input: 0.0 to 100.0°C(*2)	-	
R IZP	A12 High/Low limits independent	Conductivity input: 0.00 mS/cm	
	upper side span Setting range: Same as those of A11 H	Temperature input: 0.0°C	
	upper side span (p.86)		
	A21 High/Low limits independent	Conductivity input: 0.00 mS/cm	
82 IP	upper side span	Temperature input: 0.0℃	
000	Setting range: Same as those of A11 H	ligh/Low limits independent	
	upper side span (p.86) surement unit and decimal point place follow the r		

(*1) The measurement unit and decimal point place follow the measurement range.
 (*2) The placement of the decimal point does not follow the selection. It is fixed.

Character		Item, Setting Range	Factory Default	Data
822P	-	w limits independent	Conductivity input: 0.00 mS/cm	
000	upper side s	•	Temperature input: 0.0°C	
	Setting rang	_	ligh/Low limits independent	
R H	Add by stores	upper side span (p.86)	molam Tama anatum innut 4.0°C	
	A11 hysteres		mS/cm, Temperature input: 1.0℃	
00	(Table 15-4)	1		
	Conductivi			
	Me	easurement Range	Setting Range	
		0.00 to 20.00 mS/cm	0.01 to 2.00 mS/cm	
		0.0 to 200.0 mS/cm	0.1 to 20.0 mS/cm	
		0.0 to 500.0 mS/cm	0.1 to 50.0 mS/cm	
		0 to 500 mS/cm	1 to 50 mS/cm	
		0.000 to 2.000 mS/cm	0.001 to 0.200 mS/cm	
		0.000 to 5.000 mS/cm	0.001 to 0.500 mS/cm	
		0.00 to 50.00 mS/cm	0.01 to 5.00 mS/cm	
		0 to 2000 <i>µ</i> S/cm	1 to 200 µS/cm	
		0 to 5000 µS/cm	1 to 500 µS/cm	
	Cell	0.000 to 2.000 S/m 0.00 to 20.00 S/m	0.001 to 0.200 S/m 0.01 to 2.00 S/m	
	constant			
	1.0/cm	0.00 to 50.00 S/m 0.0 to 50.0 S/m	0.01 to 5.00 S/m 0.1 to 5.0 S/m	
	1.0/CIII	0 to 2000 mS/m		
		0.000 to 5.000 S/m	1 to 200 mS/m	
		0.0 to 200.0 mS/m	0.001 to 0.500 S/m 0.1 to 20.0 mS/m	
		0.0 to 500.0 mS/m	0.1 to 50.0 mS/m	
		0.0 to 20.0 g/L	0.1 to 2.0 g/L	
		0 to 200 g/L	1 to 20 g/L	
		0 to 500 g/L	1 to 50 g/L	
		0 to 2000 mg/L	1 to 200 mg/L	
		0 to 5000 mg/L	1 to 500 mg/L	
		0.0 to 200.0 mS/cm	0.1 to 20.0 mS/cm	
		0.0 to 500.0 mS/cm	0.1 to 50.0 mS/cm	
		0 to 2000 mS/cm	1 to 200 mS/cm	
	Cell	0.00 to 20.00 S/m	0.01 to 2.00 S/m	
	constant	0.00 to 50.00 S/m	0.01 to 5.00 S/m	
	10.0/cm	0.0 to 200.0 S/m	0.1 to 20.0 S/m	
		0 to 200 g/L	1 to 20 g/L	
		0 to 500 g/L	1 to 50 g/L	
		0 to 2000 g/L	1 to 200 g/L	
	Seawater	salinity 0.00 to 4.00%	0.01 to 0.40%	
		nity 0.00 to 20.00%	0.01 to 2.00%	
	Temperatu			
		easurement Range	Setting Range	
	0.0 to 100		0.1 to 10.0°C	
7 ISH	A12 hysteres	Sis Conductivity input: 0.01	mS/cm, Temperature input: 1.0°C	
0.0 /	Setting rang	ge: Same as those of A11 h	ysteresis (p.87)	
72 IH	A21 hysteres	Sis Conductivity input: 0.01	mS/cm, Temperature input: 1.0°C	
00 1	Setting rand	ge: Same as those of A11 h	ysteresis (p.87)	
722H	A22 hysteres		mS/cm, Temperature input: 1.0°C	
001		ge: Same as those of A11 h		
		when input errors occur		
hee				
lErr off[]	ם	•		

Character	Setting Item, Setting Range	Factory Default	Data
F: F :	Conductivity input filter time constant	0.0 seconds	
0.0	Setting range: 0.0 to 10.0 seconds		
E50	Conductivity input sensor correction	0.00 mS/cm	
000	Setting range: ±10% of measurement span (*)		
<u>4667 -</u>	3-electrode Conductivity Sensor resistance	0Ω	
<i>D</i>	Setting range: 0 to 100 Ω		
dFcf	Conductivity inputs for moving average	20	
E 20	Setting range: 1 to 120		

(*) The measurement unit and decimal point place follow the measurement range.

Temperature Input Group

Character	Setting Item, Setting Range	Factory Default	Data
[cn]	Temperature compensation method	NaCl	
nReL	$\sigma B c L$: Temperature compensation is cond		
	characteristics of NaCl. Select whe	en the main salt ingredient	
	in a sample is NaCl. 「こっと:Temperature compensation is cond	husted using temperature	
	coefficient (%/°C) and a randomly s		
	aFF: No temperature compensation		
EcoE	Temperature coefficient	2.00 %/°C	
2.00	Setting range: -5.00 to 5.00 %/°C		
hīnd	Reference temperature	25.0℃	
250	Setting range: 5.0 to $95.0^{\circ}C$ (*)		
dP2	Decimal point place	1 digit after decimal point	
	\Box : No decimal point		
	$\Box \Box \Box \Box \Box$: 1 digit after decimal point		
conE	Pt100 input wire type	3-wire type	
PF 3	$P \Gamma \square 2$: 2-wire type		
<u> </u>	Pr 3 : 3-wire type	0.0	
_ R6L	Cable length correction	0.0 m	
<u> </u>	Setting range: 0.0 to 100.0 m	0.00 mm ²	
	Cable cross-section area Setting range: 0.10 to 2.00 mm ²	0.30 mm ²	
		0.0 secondo	
FI F 2	Temperature input filter time constant	0.0 seconds	
	Setting range: 0.0 to10.0 seconds		
dFcf	Temperature inputs for moving average	20	
20	Setting range: 1 to 120		

(*) The placement of the decimal point follows the selection.

Basic Function Group

Character	Setting Item, Setting Range	Factory Default	Data
Lock	Set value lock	Unlock	
	: Unlock		
	とロロ / : Lock 1		
	<i>ಓರ್ಧರೆ</i> : Lock 2		
	Lac∃ : Lock 3		
6756	Communication protocol	Shinko protocol	
noñL	הבהב : Shinko protocol		
	ಸ್ತದ∺ : MODBUS ASCII mode		
	ನ್ರಾರ್ಡ : MODBUS RTU mode		
cāna	Instrument number	0	
	Setting range: 0 to 95		

Character	Setting Item, Setting Ra	ange	Factory Default	Data
c ก้ h P	Communication speed		9600 bps	
95	<u> </u>			
	<i>192</i> : 19200 bps			
	∃원닉 : 38400 bps		1	
chFF	Data bit/Parity		7 bits/Even	
7E8n	<u>ຊ</u> ືອດລາ : 8 bits/No parity			
	ד י ד bits/No parity			
	8E8n : 8 bits/Even			
	ີໄEິຟິກ : 7 bits/Even ອີລຸຟຟ : 8 bits/Odd			
	ਹਿਰਰ : 7 bits/Odd			
<u>ะ กั่าโ</u>	Stop bit		1 bit	
	i : 1 bit			-
	\vec{z} : 2 bits			
[rol	Transmission output 1 type		Conductivity transmission	
Ec	E = : Conductivity transm	nission]
_	FERP : Temperature transm			
Г-Н I	Transmission output 1 high lir		20.00 mS/cm	4
2000	Conductivity transmission: Tra			
			nge high limit	
FrL I	Temperature transmission: Tra Transmission output 1 low lim		0.00 mS/cm	
	Conductivity transmission: Co			_
	-	•	utput 1 high limit	
	Temperature transmission: 0.0			
[ro2	Transmission output 2 type		Temperature transmission	
ГЕЛР	E = : Conductivity transm	nission	· · ·	
	FERP : Temperature transm	nission		
F-H2	Transmission output 2 high lir		100.0℃	
1000	Conductivity transmission: Tra			
		•	nge high limit	
[rl2	Temperature transmission: Tra			
	Transmission output 2 low lim Conductivity transmission: Co		0.0℃	-
	-	•	utput 2 high limit	
	Temperature transmission: 0.0			
Fre I	Transmission output 1 status		Last value HOLD	1
ЬЕГН	when calibrating			
	<i>bEFH</i> : Last value HOLD]
	<i>っとこと</i> : Set value HOLD			
<u> </u>	PBH : Measured value			
[-5]	Transmission output 1 value		ty transmission: 0.00 mS/cm	
000	HOLD when calibrating	· · · · · · · · · · · · · · · · · · ·	e transmission: 0.0°C	4
	Conductivity transmission: Cor	•	nge high limit to	
	Temperature transmission: 0.0	•		
[rc2	Transmission output 2 status		Last value HOLD	1
ЬЕГН	when calibrating		-	
	<i>LEFH</i> : Last value HOLD]
	<i>ΈΓΗ</i> : Set value HOLD			
	PBH : Measured value	I		
<u>[2</u>	Transmission output 2 value		ty transmission: 0.00 mS/cm	
00	HOLD when calibrating		re transmission: 0.0°C	4
	Conductivity transmission: Conductivity range low limit to Conductivity range high limit			
			.a <a< td=""><td></td></a<>	
	Temperature transmission: 0.0 to 100.0℃			

Character	Setting Item, Setting Range	Factory Default	Data
LIGE	Auto-light function	Disabled	
	: Disabled		
	<i>UㄣΕ</i> □ : Enabled		
di SP	Display selection	Conductivity/Temperature	
RLL		<u>.</u>	
	Conductivity Display	Temperature Display	
	RLL Conductivity	Temperature	
	Ec. Conductivity	No indication	
	TEAP No indication	Temperature	
	nan£ No indication	No indication	
	Indication time	00.00	
0000	Setting range: 00.00 (Remains lit)		
E 10	00.01 to 60.00 (Minutes.	,	
oFdP oFF	Temperature Display when no temperature compensation	Unlit	
	Selection item:	L	1
	ト/ d□: Reference temperature		
	PB : Measured value		
R IoF	A1 output allocation	A11 type	
8:1	Selection item:		
	<i>用 I I</i> ⊡ : A11 type		
	<i>⊟ 12</i> ⊡ : A12 type		
	<i>B⊇ I</i> ⊡ : A21 type		
	<i>₽22</i> ⊡ : A22 type		
	8 /8L : A11, A12 types		
	828L : A21, A22 types		
	<i>用 Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ Ⅰ</i>		
	<i>튀근튀근</i> : A12, A22 types		
07.0	RLL : A11, A12, A21, A22 types		
RZoF	A2 output allocation	A21 type	-
82 (Selection item: Same as those of A1 ou		
oonl	Output ON time when A1 output is ON	0 seconds	
aaf i	Setting range: 0 to 9999 seconds		
	Output OFF time when A1 output is ON	0 seconds	
loond	Setting range: 0 to 9999 seconds	0 secondo	
	Output ON time when A2 output is ON	0 seconds	-
00F2	Setting range: 0 to 9999 seconds Output OFF time when A2 output is ON	0 seconds	
	Setting range: 0 to 9999 seconds	0 Seconds	-
RIE	A1 conductivity input error alarm A	No action	
	type		
·	Selection item:		
	: No action		
	<i>用 I I</i> ⊡ : A11 type		
	<i>用 12</i> ⊡ : A12 type		
	82 / : A21 type		
	<i>₽₽2</i> ⊡ : A22 type		

Character	Setting Item, Setting Range	Factory Default	Data
RZE	A2 conductivity input error alarm A	No action	
	type		
	Selection item:		
	: No action		
	<i>用 I I</i> ⊡ : A11 type		
	<i>用 12</i> □ : A12 type		
	<i>₽₽ /</i> □ : A21 type		
	<i>₽₽₽</i> : A22 type		
R IEo	A1 conductivity input error alarm band	0.00 mS/cm	
<u>aoo</u>	when A output ON		
	Setting range:		
	Conductivity range low limit to Conductivity	range high limit	
R lof	A1 conductivity input error alarm time	0 seconds	
<i>D</i>	when A output ON		_
	Setting range: 0 to 9999 seconds or minutes		
R IEc	A1 conductivity input error alarm band	0.00 mS/cm	
	when A		
	Setting range:		
	Conductivity range low limit to Conductivity	<u> </u>	
$R I_C \Gamma$	A1 conductivity input error alarm time	0 seconds	
<i>D</i>	when A		
	Setting range: 0 to 9999 seconds or minutes		
8250	A2 conductivity input error alarm band	0.00 mS/cm	
<u>aoo</u>	when A output ON		
	Setting range:		
	Conductivity range low limit to Conductivity	range high limit	
8205	A2 conductivity input error alarm time	0 seconds	
<i>D</i>	when A output ON		_
	Setting range: 0 to 9999 seconds or minutes		
RZEc	A2 conductivity input error alarm band	0.00 mS/cm	
000	when A output OFF		
	Setting range:		
	Conductivity range low limit to Conductivity		
RZcſ	A2 conductivity input error alarm time	0 seconds	
<i>D</i>	when A output OFF		
	Setting range: 0 to 9999 seconds or minutes	s (*)	
~_ <u>5</u> _	Conductivity input error alarm time unit	Second(s)	
4Ec	Selection item:		
	らたこ: Second(s)		
	ก็เ≀ก่่ : Minute(s)		

(*) The time unit depends on the selection in [Conductivity input error alarm time unit].

***** Inquiries *****

For any inquiries about this unit, please contact our agency or the vendor where you purchased the unit after checking the following.

[Example]

• Model ----- WIL-102-ECH

Serial number ----- No. 195F05000

In addition to the above, please let us know the details of the malfunction, or discrepancy, and the operating conditions.

SHINKO TECHNOS CO., LTD. OVERSEAS DIVISION

Head Office: [URL] [E-mail]

2-5-1, Senbahigashi, Minoo, Osaka, 562-0035, Japan

https://shinko-technos.co.jp/e/ overseas@shinko-technos.co.jp Tel: +81-72-727-6100 Fax: +81-72-727-7006

No. WIL11CECE11 2025.04