
Plug-in Type Digital Indicating Conductivity Meter WIL-102-ECL (Low Concentration)

Instruction Manual

Preface

Thank you for purchasing our WIL-102-ECL (Low Concentration), Plug-in Type Digital Indicating Conductivity Meter.

This manual contains instructions for the mounting, functions, operations and notes when operating the WIL-102-ECL. To ensure safe and correct use, thoroughly read and understand this manual before using this instrument. To prevent accidents arising from the misuse of this instrument, please ensure the operator receives this manual.

Indication	4	0	1	2	Э	Ч	5	8	7	8	9	Ľ	F
Number, °C/°F	-1	0	1	2	3	4	5	6	7	8	9	ç	°F
Indication	Я	Ь	Ē	đ	Ε	F	5	Н	- 1	L'	E	1	ñ
Alphabet	А	В	С	D	Е	F	G	Н	-	J	К	L	М
Indication	n	D	Ρ	9	r	5	Γ	Ц	В	Ľ.	U i	Ч	111
Alphabet	Ν	0	Ρ	Q	R	S	Т	U	V	W	Х	Y	Ζ

Characters Used in This Manual

A Caution

- This instrument should be used in accordance with the specifications described in the manual. If it is not used according to the specifications, it may malfunction or cause a fire.
- Be sure to follow all of the warnings, cautions and notices. If they are not observed, serious injury or malfunction may occur.
- The contents of this instruction manual are subject to change without notice.
- Care has been taken to ensure that the contents of this instruction manual are correct, but if there are any doubts, mistakes or questions, please inform our sales department.
- This instrument is designed to be installed on a DIN rail in an indoor control panel. If it is not, measures must be taken to ensure that the operator cannot touch power terminals or other high voltage sections.
- Any unauthorized transfer or copying of this document, in part or in whole, is prohibited.
- Shinko Technos CO., LTD. is not liable for any damage or secondary damage(s) incurred as a result of using this product, including any indirect damage.

Safety Precautions (Be sure to read these precautions before using our products.)

The safety precautions are classified into 2 categories: "Warning" and "Caution". Depending on the circumstances, procedures indicated by \triangle Caution may result in serious consequences, so be sure to follow the directions for usage.

Procedures which may lead to dangerous conditions and cause death or serious injury, if not carried out properly.

Procedures which may lead to dangerous conditions and cause superficial to medium injury or physical damage or may degrade or damage the product, if not carried out properly.

A Warning

- To prevent an electrical shock or fire, only Shinko or other qualified service personnel may handle the inner assembly.
- To prevent an electrical shock, fire or damage to the instrument, parts replacement may only be undertaken by Shinko or other qualified service personnel.

$lap{l}$ SAFETY PRECAUTIONS

- To ensure safe and correct use, thoroughly read and understand this manual before using this instrument.
- This instrument is intended to be used for measuring equipment. Verify correct usage after purpose-of-use consultation with our agency or main office. (Never use this instrument for medical purposes with which human lives are involved.)
- External protection devices such as protective equipment against excessive temperature rise, etc. must be installed, as malfunction of this product could result in serious damage to the system or injury to personnel. Proper periodic maintenance is also required.
- This instrument must be used under the conditions and environment described in this manual. Shinko Technos Co., Ltd. does not accept liability for any injury, loss of life or damage occurring due to the instrument being used under conditions not otherwise stated in this manual.

Warning on Model Label

1 Caution

Failure to handle this instrument properly may result in minor or moderate injury or property damage due to fire, malfunction, malfunction, or electric shock. Please read this manual before using the product to ensure that you fully understand the product.

Δ Caution with Respect to Export Trade Control Ordinance

To avoid this instrument from being used as a component in, or as being utilized in the manufacture of weapons of mass destruction (i.e. military applications, military equipment, etc.), please investigate the end users and the final use of this instrument. In the case of resale, ensure that this instrument is not illegally exported.

PRECAUTIONS

1. Installation Precautions

1 Caution

This instrument is intended to be used under the following environmental conditions (IEC61010-1):

- Overvoltage category $\ \ \mathbb{I}$, Pollution degree 2

Ensure the mounting location corresponds to the following conditions:

- A minimum of dust, and an absence of corrosive gases
- No flammable, explosive gases
- No mechanical vibrations or shocks
- No exposure to direct sunlight, an ambient temperature of 0 to 50 $^\circ C$ (32 to 122 $^\circ F)$ that does not change rapidly, and no icing
- An ambient non-condensing humidity of 35 to 85 %RH
- No large capacity electromagnetic switches or cables through which large current is flowing
- No water, oil, chemicals or the vapors of these substances can come into direct contact with the unit.
- If the WIL-102-ECL is installed within a control panel, the ambient temperature of the unit not the ambient temperature of the control panel must be kept under 50°C. Otherwise the life of electronic parts (especially electrolytic capacitors) of the unit will be shortened.

Note: Do not install this instrument on or near flammable material even though the case of this instrument is made of flame-resistant resin.

A Caution

- Do not leave wire remnants in the instrument, as they could cause a fire and/or a malfunction.
- Use a solderless terminal with an insulation sleeve in which the M3 screw fits when wiring the WIL-102-ECL.
- Tighten the terminal screw using the specified torque. If excessive force is applied to the screw when tightening, the terminal screw may be damaged.
- This instrument does not have a built-in power switch, circuit breaker and fuse. It is necessary to install a power switch, circuit breaker and fuse near the instrument. (Recommended fuse: Time-lag fuse, rated voltage 250 V AC, rated current 2 A)
- For a 24 V AC/DC power source, do not confuse polarity when using direct current (DC).
- Do not apply a commercial power source to the sensor which is connected to the input terminal nor allow the power source to come into contact with the sensor.
- Use the 2-electrode Conductivity Sensor in accordance with the sensor input specifications of the WIL-102-ECL.
- Keep the input wires and power lines separate.

Note about the 2-Electrode Conductivity Sensor Cable

The 2-electrode Conductivity Sensor cable is a highly-insulated (electrical) cable. Please handle it with utmost care as follows.

- The 2-electrode Conductivity Sensor cable should be wired directly to the socket.
- Do not allow terminals and socket of the 2-electrode Conductivity Sensor cable to come in contact with moisture or oil of any kind. Likewise, ensure fingers are clean, otherwise the insulation will deteriorate, resulting in unstable indication.

Be sure to keep the cable dry and clean at all times.

- If the cable is stained, clean it with alcohol, and dry it completely.
- For calibration or electrode checking/replacement, the 2-electrode Conductivity Sensor cable should be wired with sufficient length.
- Keep the 2-electrode Conductivity Sensor cable and junction cable away from electrical devices, such as motors or their power lines from which inductive interference emanates.

Connection

The 2-electrode Conductivity Sensor cable has the following terminals.

Code	Terminal
1	Conductivity sensor terminal 2
2	Conductivity sensor terminal 3
A, B (T, T)	Temperature compensation sensor terminals [Pt100 (2-wire), Pt1000] 5-6
A, B, B	Temperature compensation sensor terminals [Pt100 (3-wire)] 5-6-7
E	Shield wire terminal 8

For the electrode with no temperature compensation, A, B (T, T) or A, B, B cables are not available. E cables are available depending on the sensor type.

During operation, the Conductivity/Temperature Display may become abnormal or unstable due to inductive interference or noise. In this case, try [Grounding of shield wire terminal (E) (P.77)].

3. Operation and Maintenance Precautions

Caution

- Do not touch live terminals. This may cause an electrical shock or problems in operation.
- Turn the power supply to the instrument OFF when retightening the terminal or cleaning. Working on or touching the terminal with the power switched ON may result in severe injury or death due to electrical shock.
- Use a soft, dry cloth when cleaning the instrument.
 - (Alcohol based substances may tarnish or deface the unit.)
- As the display section is vulnerable, be careful not to put pressure on, scratch or strike it with a hard object.

4. Compliance with Safety Standards

Caution

- Always install the recommended fuse described in this manual externally.
- If the instrument is used in a manner not specified by the manufacturer, the protection provided by the instrument may be impaired.
- Use a device with reinforced insulation or double insulation for the external circuit connected to this product.

1. Model	8
1.1 Model	8
1.2 How to Read the Model Label	8
2. Names and Functions of Instrument	9
3. Mounting to the Control Panel	10
3.1 Site Selection	
4. Removal	
5. Wiring	
5.1 Lead Wire Solderless Terminal	
5.2 Terminal Arrangement	
5.3 Wire the Communication Line	
6. Outline of Key Operation and Setting Grou	ps17
c .	
-	
,	
-	
•	
	lode
•	
•	
•	
-	
•	
	48
11.5.2 Data Communication Interva	l
• •	
11.5.4 Message Example	

Contents

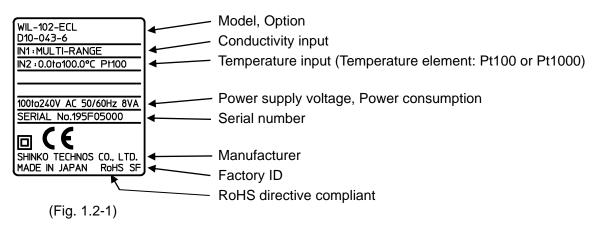
	11.6 Communication Command Table	56
	11.6.1 Notes about Setting/Reading Command	. 56
	11.6.2 Setting/Reading Command	. 57
	11.6.3 Read Only Command	. 63
	11.7 Conductivity & Temperature Calibrations, Transmission Output 1 & 2 Adjustments	65
	via Communication Command	. 65
	11.7.1 Conductivity Calibration	. 65
	11.7.2 Temperature Calibration	. 66
	11.7.3 Transmission Output 1 Adjustment	
	11.7.4 Transmission Output 2 Adjustment	. 67
	11.8 Notes on Programming Monitoring Software	68
	11.8.1 How to Speed up the Scan Time	
	11.8.2 How to Read the Set Value Changes Made by Front Keypad Operation	. 68
	11.8.3 Note when Sending All Set Values Simultaneously	. 68
12.	Specifications	69
	12.1 Standard Specifications	69
	12.2 Optional Specifications	
13.	Troubleshooting	78
	13.1 Indication	78
	13.2 Key Operation	79
	13.3 Calibration	79
	13.4 Communication	79
14.	Temperature Compensation Method	81
	14.1 Temperature Compensation Based on the Temperature Characteristics of NaCI	81
	14.2 How to Input Temperature Coefficient	
	14.3 Temperature Compensation Based on the Temperature Characteristics of Deionized Water	
15.	Character Tables	
		· - ·

1. Model

1.1 Model

WIL-10	2	-EC	L		,	
Input Points	Input Points 2				2 points	
				2-electrode Conductivity Sensor		
Input		FC				(Temperature element: Pt100) (*1)
mput	Input EC			2-electrode Conductivity Sensor		2-electrode Conductivity Sensor
					(Temperature element: Pt1000) (*1)	
Concentration	Concentration L				Low concentration	
Dowor Supply	Supply Voltage			100 to 240 V AC (standard)		
Power Supply	/ 00	lage		1		24 V AC/DC (*2)
Option					EVT	A output (A11, A12, A21, A22)
			TA	Transmission output 1 (*3)		
					TA2	Transmission output 1, Transmission output 2

(*1) This input temperature specification was specified at the time of ordering.


(*2) Power supply voltage 100 to 240 V AC is standard.

When ordering 24 V AC/DC, enter "1" in Power Supply Voltage after "ECL".

(*3) If TA option is ordered, the EVT option (A1 output only) will be added.

1.2 How to Read the Model Label

The model label is attached to the left side of the case.

2. Names and Functions of Instrument **PWR** Indicator CH1 Unit label (CH1) Conductivity Display (CH1) Unit label (CH2) Temperature Display (CH2) -T/R Indicator A1 Indicator -A2 Indicator UP key MODE key SET DOWN key SET/RESET key RESET Shap Light Sensor C

(Fig. 2-1)

Displays

Conductivity Display	vity Display Conductivity, or characters in setting mode are indicated in red.		
(CH1)	Indications differ depending on the selections in [Display selection (p.34)].		
Temperature Display	Temperature, or values in setting mode are indicated in red.		
(CH2)	Indications differ depending on the selections in [Display selection (p.34)].		
Unit label (CH1)	Attach the user's unit of Conductivity Display (CH1) from the included unit		
	labels if necessary.		
Unit label (CH2)	Attach the user's unit of Temperature Display (CH2) from the included unit		
	labels if necessary.		

Action Indicators

PWR Indicator	When power supply to the instrument is turned ON, the yellow LED lights.		
A1 Indicator	When A1 output (Contact output 1) is ON, the red LED lights.		
	(Unlit if TA2 option is ordered.)		
A2 Indicator	When A2 output (Contact output 2) is ON, the yellow LED lights.		
	(Unlit if TA option or TA2 option is ordered.)		
T/R Indicator	The yellow LED lights during Serial communication TX output (transmitting		

Key

UP key Increases the numeric value.			
DOWN key Decreases the numeric value.			
MODE key	Selects a setting group.		
SET/RESET key	Switches the setting modes, and registers the set value.		
Light Sensor	Automatically measures and controls brightness of the Conductivity Display,		
	Temperature Display and Action indicators.		

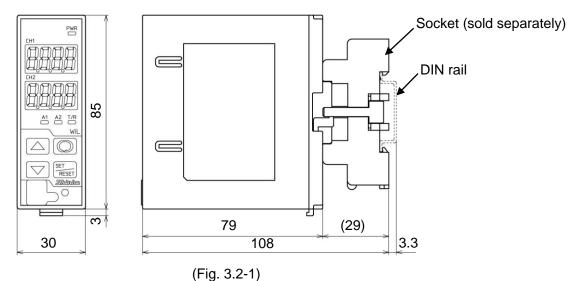
When setting the specifications and functions of this instrument, connect mains power cable to terminals 13 and 14 first, then set them referring from "6. Outline of Key Operation and Setting Groups" to "8. Setup (pp.16 to 38)" before performing "3. Mounting to the Control Panel (p.9)" and "5. Wiring (p.12)".

3. Mounting to the Control Panel

3.1 Site Selection

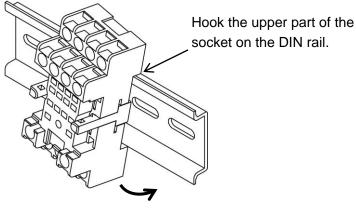
▲ Caution

Use within the following temperature and humidity ranges.


Temperature: 0 to 50° C (32 to 122° F) (No icing), Humidity: 35 to 85 %RH (Non-condensing) If the WIL-102-ECL is installed within a control panel, the ambient temperature of the unit – not the ambient temperature of the control panel – must be kept under 50° C. Otherwise the life of electronic parts (especially electrolytic capacitors) of the unit will be shortened.

This instrument is intended to be used under the following environmental conditions (IEC61010-1): Overvoltage category II, Pollution degree 2

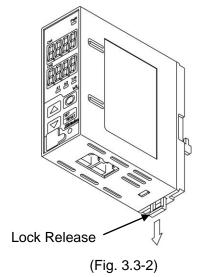
Ensure the mounting location corresponds to the following conditions:

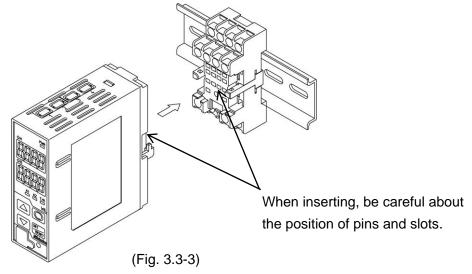

- · A minimum of dust, and an absence of corrosive gases
- No flammable, explosive gases
- No mechanical vibrations or shocks
- No exposure to direct sunlight, an ambient temperature of 0 to 50°C (32 to 122°F) that does not change rapidly
- An ambient non-condensing humidity of 35 to 85 %RH
- No large capacity electromagnetic switches or cables through which large current is flowing
- No water, oil, chemicals or the vapors of these substances can come into direct contact with the unit.

3.2 External Dimensions (Scale: mm)

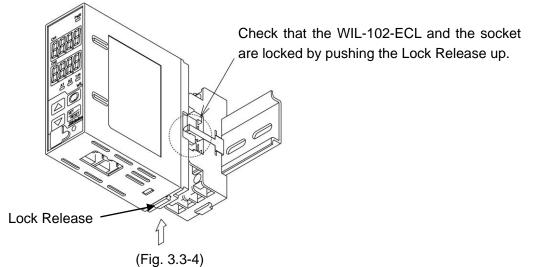
3.3 Mounting

(1) Hook the upper part of the socket on the DIN rail, and mount it (A clicking sound is heard).

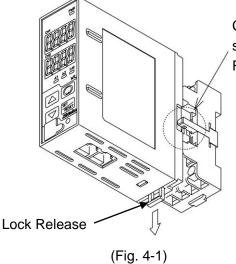



A Caution

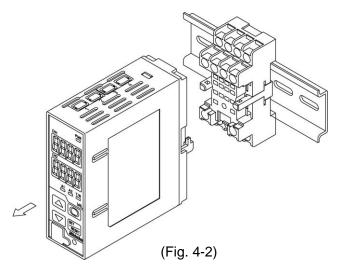
Before inserting the WIL-102-ECL into the socket, wire the unit. Refer to Section "5. Wiring" (p.12).


(2) Check that the Lock Release has been lowered.

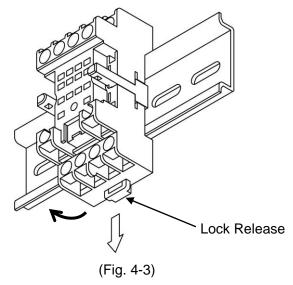
(3) Insert the WIL-102-ECL into the socket.



(4) Fix the WIL-102-ECL and the socket by pushing the Lock Release up.


4. Removal

- (1) Turn the power supply to the unit OFF.
- (2) Pull the Lock Release down, and release the WIL-102-ECL from the socket.



Check that the WIL-102-ECL and the socket are unlocked by pulling the Lock Release down.

(3) Separate the WIL-102-ECL from the socket.

(4) Remove the socket from the DIN rail by pulling the socket Lock Release (at the bottom of the socket) down.

5. Wiring

\land Warning

Turn the power supply to the instrument off before wiring or checking.

Working on or touching the terminal with the power switched on may result in severe injury or death due to electrical shock.

1 Caution

- Do not leave wire remnants in the instrument, as they could cause a fire or a malfunction.
- Use a solderless terminal with an insulation sleeve in which the M3 screw fits when wiring the unit.
- Tighten the terminal screw using the specified torque. If excessive force is applied to the screw when tightening, the terminal screw may be damaged.
- This instrument does not have a built-in power switch, circuit breaker and fuse. It is necessary to install a power switch, circuit breaker and fuse near the instrument. (Recommended fuse: Time-lag fuse, rated voltage 250 V AC, rated current 2 A)
- For a 24 V AC/DC power source, do not confuse polarity when using direct current (DC).
- Do not apply a commercial power source to the sensor which is connected to the input terminal nor allow the power source to come into contact with the sensor.
- Use the 2-electrode Conductivity Sensor in accordance with the sensor input specifications of this unit.
- Keep the input wires and power lines separate.

Note about the 2-Electrode Conductivity Sensor Cable

The 2-electrode Conductivity Sensor cable is a highly-insulated (electrical) cable. Please handle it with utmost care as follows.

- The 2-electrode Conductivity Sensor cable should be wired directly to the socket.
- Do not allow terminals and socket of the 2-electrode Conductivity Sensor cable to come in contact with moisture or oil of any kind. Likewise, ensure fingers are clean, otherwise the insulation will deteriorate, resulting in unstable indication.

Be sure to keep the cable dry and clean at all times.

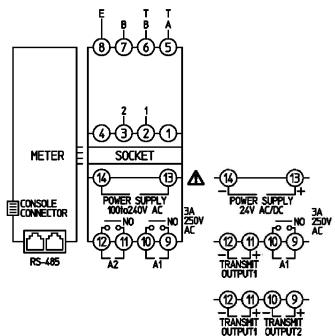
- If the cable is stained, clean it with alcohol, and dry it completely.
- For calibration or electrode checking/replacement, the 2-electrode Conductivity Sensor cable should be wired with sufficient length.
- Keep the 2-electrode Conductivity Sensor cable and junction cable away from electrical devices, such as motors or their power lines from which inductive interference emanates.

Connection

The 2-electrode Conductivity Sensor cable has the following terminals.

Code	Terminal		
1	Conductivity sensor terminal 2		
2	Conductivity sensor terminal 3		
A, B (T, T)	Temperature compensation sensor terminals [Pt100 (2-wire), Pt1000] 5-6		
A, B, B	Temperature compensation sensor terminals [Pt100 (3-wire)] 5-6-7		
E	Shield wire terminal 8		

For the electrode with No Temperature Compensation, A, B (T, T) or A, B, B cables are not available. E cables are available depending on the sensor type.


During operation, the Conductivity/Temperature Display may become abnormal or unstable due to inductive interference or noise. In this case, try [Grounding of shield wire terminal (E) (P.77)].

5.1 Lead Wire Solderless Terminal

Use a solderless terminal with an insulation sleeve in which an M3 screw fits as follows. **The tightening torque should be 0.63 N·m.**

Solderless Terminal	Manufacturer	Model TMEX1.25Y-3S	
Y-type	NICHIFU TERMINAL INDUSTRIES CO., LTD.		
	X mm max. 4 mm max. 4 mm max. 4 mm max.		
	(Fig. 5.1-1)		

5.2 Terminal Arrangement

Modular Jack Pin (WIL-102-ECL side arrangement)

No. 1	No. 1	СОМ
No. 6	No. 2	NC
No. 1	No. 3	YB(+)
No. 6	No. 4	YA(-)
RS-485	No. 5	NC
	No. 6	COM

(Fig. 5.2-1)

- 1, 2: Conductivity sensor terminals 1, 2 (2-3)
- A, B: Temperature compensation sensor terminals (T, T) (5-6)

Temperature element: Pt100 (2-wire type) or Pt1000

A, B, B: Temperature compensation sensor terminals ((5)-(6)-(7))

Temperature element: Pt100 (3-wire type)

- E: Shield wire terminal (8)
- When EVT option is ordered:

A1: A1 output terminals (9-10)

A2: A2 output terminals (11-12)

When TA option is ordered:

- A1: A1 output terminals (9-10)
- TRANSMIT OUTPUT 1:

Transmission output 1 terminals (11-12)

When TA2 option is ordered:

TRANSMIT OUTPUT2:

Transmission output 2 terminals (9-10)

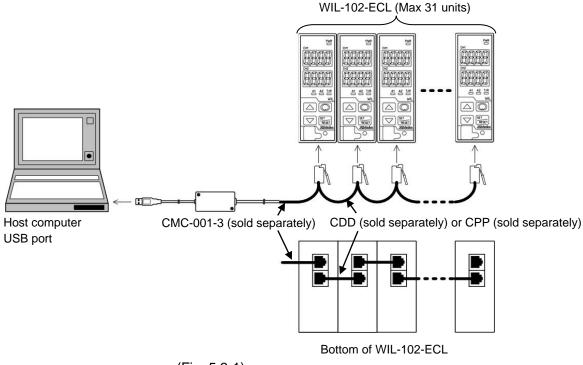
TRANSMIT OUTPUT1 :

Transmission output 1 terminals (11-12)

POWER SUPPLY:

Power terminals (13-14)

24 V AC/DC (When "1" is added after model name.)


RS-485: Serial Communication modular jack

When no option is ordered: A1, A2, TRANSMIT OUTPUT1, TRANSMIT OUTPUT2 terminals are not equipped.

5.3 Wire the Communication Line.

Connect to the modular jack at the bottom of the instrument, using CDD (sold separately) or CPP (sold separately).

• Wiring Example Using a USB Communication Cable CMC-001-3 (sold separately)

• Wiring Example Using a Communication Converter IF-400

(Fig. 5.3-2)

Shield Wire

Be sure to ground only one end of the shield wire so that current cannot flow to the shield wire. If both ends of the shield wire are grounded, the circuit will be closed, resulting in a ground loop. This may cause noise.

Be sure to ground the FG.

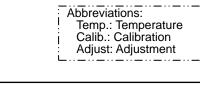
Recommended cable: OTSC-VB 2PX0.5SQ (made by Onamba Co., Ltd.) or equivalent (Use a twisted pair cable.)

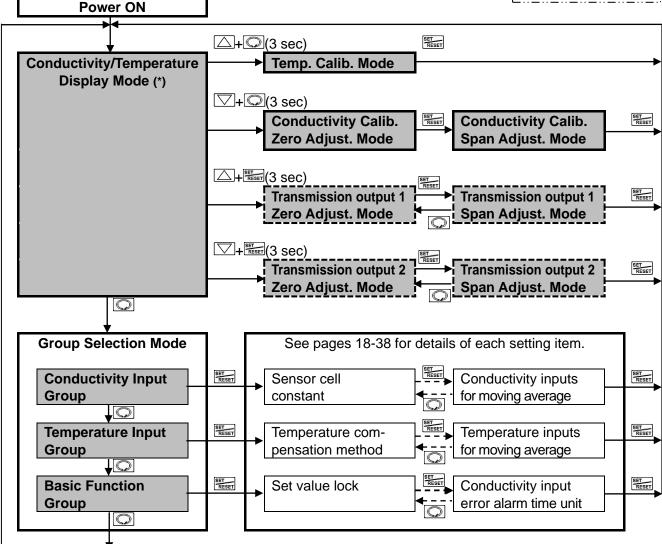
Terminator (Terminal Resistor)

The terminator is mounted at the end of the wire when connecting multiple peripheral devices to a personal computer. The terminator prevents signal reflection and disturbance.

Do not connect a terminator to the communication line because each WIL-102-ECL has built-in pull-up and pull-down resistors.

Communication converter IF-400 (sold separately) has a built-in terminal resistor.


6. Outline of Key Operation and Setting Groups

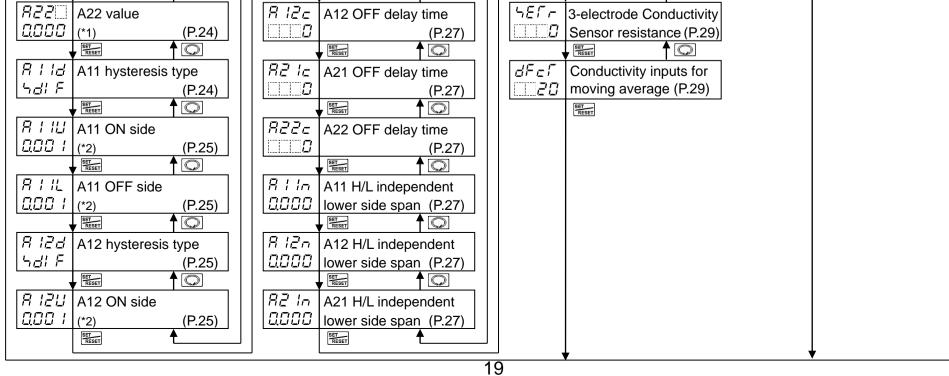

6.1 Outline of Key Operation

Setting items are divided into groups, and group selection has to be made with keypads. Press the 💭 key in Conductivity/Temperature Display Mode. The unit enters Group Selection mode.

Select a group with the \bigcirc key, and press the m key. The unit enters each setting item. To set each item, use the \bigcirc or \bigtriangledown key, and register the set value with the m key.

6.2 Setting Groups

(*) Indicates the item selected in [Display selection (p.34)] in Conductivity/Temperature Display Mode.


Available when the TA option or TA2 option is ordered.

Key Operation

- 🖂 + 🔘 (3 sec): Press and hold the 🛆 key and 🔘 key (in that order) together for 3 seconds. The unit will proceed to Temperature Calibration Mode.
- 🖂 + 🖸 (3 sec): Press and hold the 🖾 key and 🖾 key (in that order) together for 3 seconds. The unit will proceed to Conductivity Calibration Zero Adjustment Mode.
- 🖂 + 🚟 (3 sec): Press and hold the 🛆 key and 🚟 key (in that order) together for 3 seconds. The unit enters Transmission Output 1 Zero Adjustment Mode.
- 🖂 + 🚟 (3 sec): Press and hold the 🖂 key and 🚟 key (in that order) together for 3 seconds. The unit enters Transmission Output 2 Zero Adjustment Mode.
- 💭, 🚟: Press the 🔘 or 🚟 key. The unit will enter the next setting item, illustrated by an arrow.
- Free or D: Press the Free or D key until the desired setting mode appears.
- To revert to Conductivity/Temperature Display Mode, press and hold the 🔘 key for 3 seconds while in any mode.

7. Key Operation Flowchart

	n Flowchart	Abbreviations: Adjust.: Adjustment H/L: High/Low limits
Conductivity/Temper-		
+	└─□ Temperature Calibration □□□□ Mode (P.41)	
□→+□ (3 sec)		nductivity Calibration an Adjust. Mode (P.40)
+ FEFT (3 sec)		ansmission output 1 an Adjust. Mode (P.42)
+ RESET (3 sec)		ansmission output 2 an Adjust. Mode (P.43)
F.෬c. / Conductivity Input		
SET RESET		SET RESET
ELL Sensor cell constant	R IZL A12 OFF side RZZn A22 H/L independent	Γ = σ
(P.21)	(P.26) [000 / (*2) (P.26)] [0000 lower side span (P.27)	
SET RESET	V SET RESET	¥ Reset
Cell constant		$E \subseteq a \in E$ Temperature coefficient
Correction value (P.21)	(P.26)	
ビード 「 Measurement unit	B2 IU A21 ON side B I2P A12 H/L independent	<u> トレーム</u> Reference
(P.21)	(P.26)	$\square 250 \text{ temperature} (P.30)$
โล้กูลนี้ Measurement range	R2 IL A21 OFF side R2 IP A21 H/L independent	Decimal point place
2.000 (P.22)	(P.26)	
$\begin{bmatrix} \Box & \Box & \Box \\ \Box & \Box & \Box \\ \Box & \Box & \Box & \Box \\ \Box & \Box &$	R22d A22 hysteresis type R22P A22 H/L independent	CODE Pt100 input wire type アビヨ (P.30)
↓ ☐50 factor (P.22)	└ <u>└└┘┘┘/ F</u> (P.26) □□□□□□□ upper side span (P.28) ↓ ^{SEE} ▲ □□ ↓ ^{SEE} ▲ □□	
	$ \begin{array}{ $	
R IEF A12 type	$\begin{bmatrix} \exists \vec{z} \vec{z} L \\ \exists z \vec{z} L \end{bmatrix} = \begin{bmatrix} \forall z \vec{z} \vec{z} \\ \exists z \vec{z} L \end{bmatrix} = \begin{bmatrix} \forall z \vec{z} \vec{z} \\ \exists z \vec{z} \end{bmatrix} = \begin{bmatrix} \forall z \vec{z} \\ \exists z \vec{z} \\ z \\ z \vec{z} \\ z \vec{z} \\ z \vec{z} \\ z \vec{z} \\ z \\ z \vec{z} \\ z \vec{z} \\ z \\$	$\Box \neg \Xi \Box$ Cable cross-section
(P.24)	$\begin{bmatrix} 1 & 112 & 122 $	
RZ IF A21 type	$\boxed{B \mid i_{D}}$ A11 ON delay time $\boxed{B \mid i_{H}}$ A21 hysteresis	FIFE Temperature input filter
(P.24)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
RZZF A22 type	R IZ A12 ON delay time RZZH A22 hysteresis	$\Box F = \Gamma$ Temperature inputs for
(P.24)		
<i>□ □ □ □ □ □ □ □ □ □</i>	A21 ON delay time	
$\begin{bmatrix} \square \square \square \square \square \\ (*1) \end{bmatrix} (P.24)$	(P.26) P.26	
		-
A12 value	REED A22 ON delay time	
$\begin{array}{c} \square \\ \hline \square \square \square \square \square$	$(P.26) \qquad (P.26) \qquad (P.26) \qquad (P.26) \qquad (P.26) \qquad (P.26) \qquad (P.26) \qquad (P.29) \qquad (P.29)$	
R2 / A21 value	$\boxed{B / / c}$ A11 OFF delay time $\boxed{E / c}$ Conductivity input	
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ (P.24) \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
		<u> </u>

-2)

About Setting Items

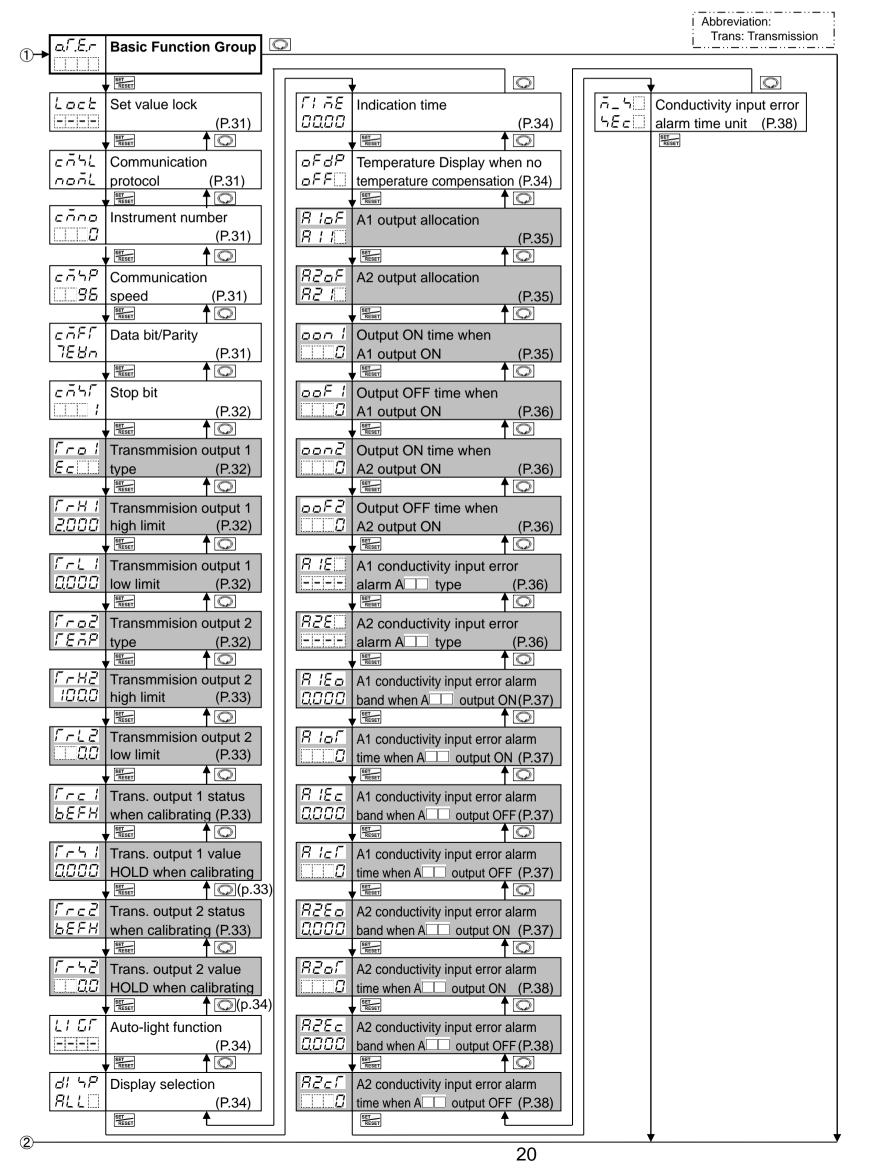
cELL	Sensor cell constant	
<u> </u>	(P.21)	
Fro I	Transmission output 1	
Ec	type (P.32)	

• Upper left: Conductivity Display: Indicates the setting item characters. • Lower left: Temperature Display: Indicates the factory default.

• Right side: Indicates the setting item and reference page.

Setting item in shaded section will be displayed only when the corresponding option is ordered.

If the TA option is added, A2 related setting items are not available.


If the TA2 option is added, A1 and A2 related setting items are not available.

(*1): Factory default value is different depending on the selection in [A representation of the selection in [A representation of the selection of the selectio

(*2): Factory default value is different depending on the selection in [A represented to the selection of th

• About Key Operation

- $\square + \square$ (3 sec): Press and hold the \square , \square keys (in that order) for 3 sec. The unit enters Temperature calibration mode.
- 🖂 + 🖾 (3 sec): Press and hold the 🖾, 🖾 keys (in that order) for 3 sec. The unit enters Conductivity calibration zero adjustment mode.
- 🖂 + 🚟 (3 sec): Press and hold the 🛆, 🚟 keys (in that order) for 3 sec. The unit enters Transmission output 1 zero adjustment mode.
- 🖂 + 🚟 (3 sec): Press and hold the 🖂, 🚟 keys (in that order) for 3 sec. The unit enters Transmission output 2 zero adjustment mode.
- \bigcirc or $\overset{\text{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff}{\overset{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff}{\overset{ff}}}{\overset{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff}}}{\overset{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff}}}{\overset{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff}}}{\overset{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff}}}{\overset{ff}}{\overset{ff}}}{\overset{ff}}{\overset{ff}}{\overset{ff}}}{\overset{ff}}{\overset{ff}}}{\overset{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff}}}{\overset{ff}}{\overset{ff}}}{\overset{ff}}{\overset{ff}}{\overset{ff}}}{\overset{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff}}}{\overset{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff}}}{\overset{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff}}}{\overset{ff}}{\overset{ff}}{\overset{ff}}{\overset{ff$
- To revert to Conductivity/Temperature Display Mode, press and hold the 🔘 key for 3 sec while in any mode.

8. Setup

Before using this instrument, setup should be performed to suit the conditions of usage:

Setting the Cell constant correction value, Measurement unit, A11, A12, A21 and A22 types,

Temperature compensation method, Communication, $A \Box \Box$ output when input errors occur, etc.

Setup can be conducted in the Conductivity Input Group, Temperature Input Group and Basic Function Group.

If the user's specification is the same as the factory default value of the WIL-102-ECL, or if setup has already been completed, it is not necessary to set up the instrument. Proceed to Section "9. Calibration (p.39)".

8.1 Turn the Power Supply ON.

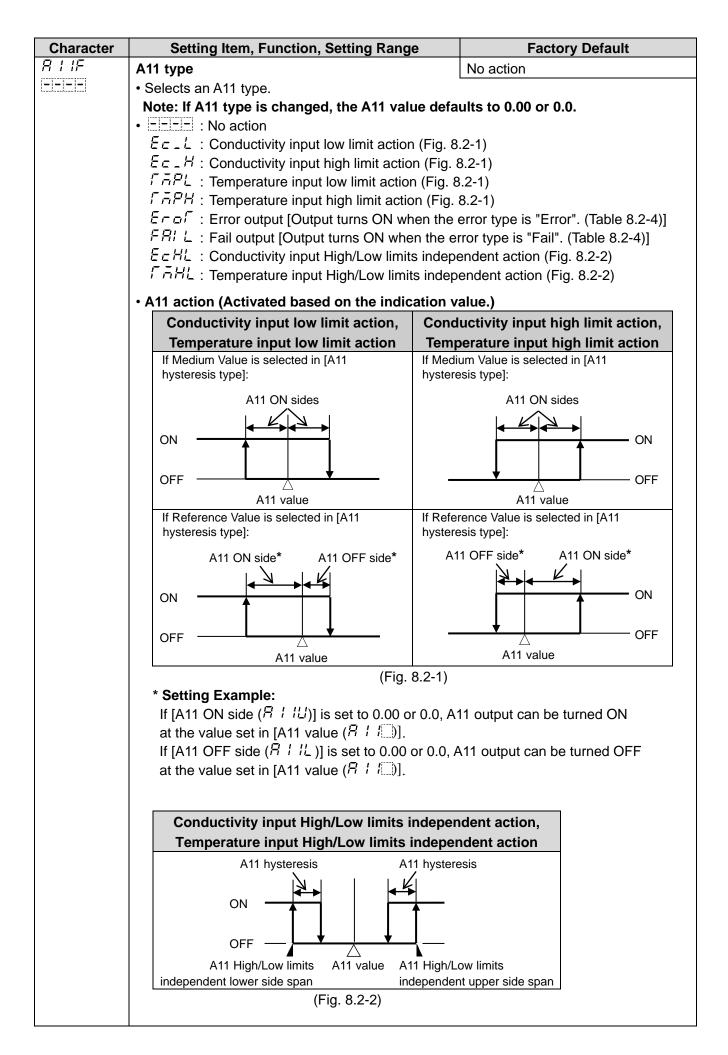
For approximately 4 seconds after the power is switched ON, the input characters are indicated on the Conductivity Display and Temperature Display. See (Table. 8.1-1).

(Table. 8.1-1)					
Display	Character	Measurement Unit			
	conð	Conductivity (μ S/cm)			
Conductivity Display	5/	Conductivity (mS/m)			
「ゴー」 TDS conversion (mg/L)			_)		
Display	Character	Input Temperature Specification (*)	Selection Item in [Pt100 Input Wire Type] (p.30)		
Temperature Display	PF_2 PF_3	Pt100	Pr 2 : 2-wire type Pr 3 : 3-wire type		
	PF 10	Pt1000			

(*) This input temperature specification was specified when ordering.

During this time, all outputs are in OFF status, and LED indicators except the PWR Indicator turn off. After that, measurement starts, indicating the item selected in [Display selection (p.34)]. This status is called Conductivity/Temperature Display Mode.

8.2 Conductivity Input Group


To enter the Conductivity Input Group, follow the procedure below.

- 1) F.n.c. / Press the 🔘 key in Conductivity/Temperature Display Mode.
- (2) ELL Press the **EVEN** key.

The unit enters the Conductivity Input Group, and "Sensor cell constant" is indicated.

Character	Setting Item, Function, Setting Range	Factory Default			
EELL	Sensor cell constant	0.01/cm			
<i>□</i> ¤¤ +	Selects sensor cell constant.				
	If the Sensor cell constant is changed, Conductivity Zero and Span adjustment				
	values and Cell constant correction value will be cleared.				
	Set the Cell constant correction value again, a	and re-calibrate the Conductivity Zero			
	and Span adjustment values.				
	 If the 3-electrode Conductivity Sensor is used, set 				
	Measurement can be made within the measurem	ent range of cell constant 1.0/cm.			
	Refer to (Table 8.2-3). (p.22)				
	Selection item:				
	$\Box \Box \Box I : 0.01/cm$				
	$\square \square \square I : 0.1/cm$				
COEF	1.0/cm	4.000			
1000	Cell constant correction value	1.000			
	• Sets sensor cell constant correction value.				
	 <i>c c E F</i> and conductivity are displayed alternately Setting range: 0.001 to 5.000 	y.			
Uni F	Versurement unit	Conductivity (μ S/cm)			
con8	Selects the conductivity unit.				
20.0	If the conductivity unit is changed, Conductiv	ity Zero and Snan adjustment values			
	will be cleared. Re-calibrate the Conductivity				
	Selection item:				
	このつち : Conductivity (µS/cm)				
	ー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・				
	「ゴ'¬□ :TDS conversion (mg/L)				

Character	Setting Item, Function, Setting Range		Factory Default		
ār nū	Measurement range		2.000 ^µ S/cm		
2.000	 Selects the measurement range of conductivity. If measurement range is changed, Conductivity Zero and Span adjustment values will be cleared. Re-calibrate the Conductivity Zero and Span adjustment values. Selection item differs depending on the sensor cell constant and measurement unit. 				
	When sensor cell constant 0.01/cm is selected: (Table 8.2-1)				
	Measurement Unit	Selection Item	Measurement Range		
		2.000	0.000 to 2.000 <i>µ</i> S/cm		
	Conductivity (μ S/cm)	2000	0.00 to 20.00 <i>µ</i> S/cm		
		5000	0.00 to 50.00 <i>µ</i> S/cm		
		0200	0.000 to 0.200 mS/m		
	Conductivity (mS/m)	2.000	0.000 to 2.000 mS/m		
		5000	0.000 to 5.000 mS/m		
		00.5	0.00 to 2.00 mg/L		
	TDS conversion (mg/L)		0.0 to 20.0 mg/L		
		<u> </u>	0.0 to 50.0 mg/L		
	(Table 8.2-2) Measurement Unit	Selection Item	Measurement Range		
		2000	0.00 to 20.00 µS/cm		
	Conductivity (μ S/cm)	5000 5000	0.00 to 50.00 µS/cm		
			0.0 to 500.0 µS/cm		
	Conductivity (mC(m)	2.000	0.000 to 2.000 mS/m		
	Conductivity (mS/m)	2000 5.000	0.000 to 2.000 mS/m 0.000 to 5.000 mS/m		
	Conductivity (mS/m)	2000 5000 5000	0.000 to 2.000 mS/m 0.000 to 5.000 mS/m 0.000 to 50.00 mS/m		
		2000 5000 5000	0.000 to 2.000 mS/m 0.000 to 5.000 mS/m 0.000 to 50.00 mS/m 0.0 to 20.0 mg/L		
	Conductivity (mS/m) TDS conversion (mg/L)	2000 5000 5000 200 200	0.000 to 2.000 mS/m 0.000 to 5.000 mS/m 0.000 to 50.00 mS/m 0.0 to 20.0 mg/L 0 to 200 mg/L		
		2000 5000 200 200 200 500	0.000 to 2.000 mS/m 0.000 to 5.000 mS/m 0.000 to 50.00 mS/m 0.0 to 20.0 mg/L 0 to 200 mg/L 0 to 500 mg/L		
	TDS conversion (mg/L) When sensor cell consta	2000 5000 5000 200 200 500 1.0/cm is select Selection Item	0.000 to 2.000 mS/m 0.000 to 5.000 mS/m 0.000 to 50.00 mS/m 0.0 to 20.0 mg/L 0 to 200 mg/L 0 to 500 mg/L		
	TDS conversion (mg/L) When sensor cell consta (Table 8.2-3)	2000 5000 5000 200 200 500 500 selection Item 2000	0.000 to 2.000 mS/m 0.000 to 5.000 mS/m 0.000 to 50.00 mS/m 0.0 to 20.0 mg/L 0 to 200 mg/L 0 to 500 mg/L ed:		
	TDS conversion (mg/L) When sensor cell consta (Table 8.2-3) Measurement Unit	2000 5000 5000 200 200 500 1.0/cm is select Selection Item	0.000 to 2.000 mS/m 0.000 to 5.000 mS/m 0.000 to 50.00 mS/m 0.0 to 20.0 mg/L 0 to 200 mg/L 0 to 500 mg/L ed: Measurement Range		
	TDS conversion (mg/L) When sensor cell consta (Table 8.2-3) Measurement Unit Conductivity (µS/cm)	2000 5000 5000 200 200 500 500 selection Item 2000	0.000 to 2.000 mS/m 0.000 to 5.000 mS/m 0.000 to 50.00 mS/m 0.0 to 20.0 mg/L 0 to 200 mg/L 0 to 500 mg/L ed: Measurement Range 0.0 to 200.0 µS/cm		
Г d \ E [] Ω 5 0	TDS conversion (mg/L) When sensor cell consta (Table 8.2-3) Measurement Unit Conductivity (µS/cm) Conductivity (mS/m)	2000 5000 5000 200 200 500 500 50	0.000 to 2.000 mS/m 0.000 to 5.000 mS/m 0.000 to 50.00 mS/m 0.0 to 20.0 mg/L 0 to 200 mg/L 0 to 500 mg/L ed: Measurement Range 0.0 to 200.0 µS/cm 0.00 to 20.00 mS/m		

Character	Setting Iter	n, Function, Setting F	Range	Factory Default	
	• Error output, (Table. 8.2-4)	Fail output			
	Error Type	Error	Description		
	Fail	Temperature sensor burnout.	Temperatu	ure sensor lead wire is burnt out.	
	Fail	Temperature sensor short-circuited	Temperature sensor lead wire is short-circuited.		
	Error	Outside temperature compensation range	Measured temperature has exceeded 110.0°C.		
	Error	Outside temperature compensation range	Measured	temperature is less than 0.0°C.	
R IZF	A12 type			No action	
		2 type. / pe is changed, the A ′ on item and action, refe			
RZ IF	A21 type	,,,,		No action	
	 Selects an A21 Note: If A21 ty 	l type. / pe is changed, the A 2 on item and action, refe			
RZZF	A22 type	,		No action	
	• Selects an A22 Note: If A22 ty	vpe is changed, the A		efaults to 0.00 or 0.0.	
811		on item and action, refe			
0000	 A11 value Conductivity input: 0.000 µS/cm, Temp. input: 0.0°C Sets an A11 value. Not available if □□□□ (No action), Erof (Error output) or FB! L (Fail output) is selected in [A11 type]. Setting range: Conductivity input: Measurement range low limit to Measurement range high limit (*1) Temperature input: 0.0 to 100.0°C (*2) 				
8 IZ	A12 value	Со	nductivity ir	nput: 0.000 μ S/cm, Temp. input: 0.0°C	
0000	 Sets an A12 va Indication cond 	alue.		me as those of A11 value. (p.24)	
82 I	A21 value		nductivity ir	nput: 0.000 μ S/cm, Temp. input: 0.0°C	
0000			are the sa	me as those of A11 value. (p.24)	
822	A22 value		nductivity ir	nput: 0.000 <i>µ</i> S/cm, Temp. input: 0.0℃	
0000	 Sets an A22 va 				
				me as those of A11 value. (p.24)	
RIId	A11 hysteresis	· ·	ference Val		
<i>∽di F</i>	 Selects A11 hysteresis type (Medium or Reference Value). Not available if (No action), ビーロ「 (Error output) or FR! L (Fail output) is selected in [A11 type]. Selection item: cd! F: Medium Value Sets the same value for both ON and OFF sides in relation to A11 value. Only ON side needs to be set. cd! F: Reference Value 				
	Both	Individual values for ON ON and OFF sides nee nal point place follow the m	d to be set		

(*1) The measurement unit and decimal point place follow the measurement range.

(*2) The placement of the decimal point does not follow the selection. It is fixed.

Character	Setting Item, Fur	nction, Sett	ing Range		Factory Default	
8110	A11 ON side	•		Conductivity input: 0.001 µS/cm		
000 I				Tempe	erature input: 1.0℃	
	• Sets the span of A11 ON side.					
	If $ c d! F$ (Medium Value) is selected in [A11 hysteresis type], the span of ON/OFF					
	side will be the same value. • Not available if ニーニー (No action), Erof (Error output) or F吊にし (Fail output)					
	is selected in [A11 type].			ipui) oi		
	(Table 8.2-5) A Type Measurement Range Setting Range					
	А Туре		0.000 to 2.000 Å		Setting Range 0.000 to 0.200 μ/S/cm	
			0.00 to 20.00 μ s		0.00 to 2.00 μ S/cm	
			0.00 to 50.00 µs		0.00 to 5.00 ^µ S/cm	
		Cell	0.000 to 0.200 m		0.000 to 0.020 mS/m	
		constant	0.000 to 2.000 m		0.000 to 0.200 mS/m	
		0.01/cm	0.000 to 5.000 m		0.000 to 0.500 mS/m	
			0.00 to 2.00 mg/l		0.00 to 0.20 mg/L	
			0.0 to 20.0 mg/L		0.0 to 2.0 mg/L	
	Conductivity input		0.0 to 50.0 mg/L		0.0 to 5.0 mg/L	
	low limit action		0.00 to 20.00 µs	S/cm	0.00 to 2.00 µS/cm	
			0.00 to 50.00 µs	S/cm	0.00 to 5.00 µS/cm	
	Conductivity input		0.0 to 500.0 µs/	′cm	0.0 to 50.0 µS/cm	
	high limit action	Cell	0.000 to 2.000 m	ıS/m	0.000 to 0.200 mS/m	
		constant	0.000 to 5.000 m	IS/m	0.000 to 0.500 mS/m	
		0.1/cm	0.00 to 50.00 mS	S/m	0.00 to 5.00 mS/m	
			0.0 to 20.0 mg/L		0.0 to 2.0 mg/L	
			0 to 200 mg/L		0 to 20 mg/L	
			0 to 500 mg/L		0 to 50 mg/L	
		Cell	0.0 to 200.0 µS/		0.0 to 20.0 <i>µ</i> S/cm	
		constant	0.00 to 20.00 mS	S/m	0.00 to 2.00 mS/m	
	Tomporature input	1.0/cm	0 to 200 mg/L		0 to 20 mg/L	
	Temperature input low limit action					
	Temperature input	0.0 to 100	.0°℃		0.0 to 10.0℃	
	high limit action					
8 _	A11 OFF side	•		Condu	uctivity input: 0.001 μ S/cm	
0001					erature input: 1.0℃	
	Sets the span of A11 OF					
	• Not available if cdi F	(Medium Va	alue) is selected in	[A11 hy	steresis type].	
	Not available if	. ,	, こっつう (Error ou	tput) or	ーボ に (Fail output)	
	is selected in [A11 type].		be coloctions of Ad	1 + 1	and managurament renge	
	Setting range differs dep See (Table 8.2-5). (p.25)		ine selections of A1	і туре а	and measurement range.	
8 12 4	A12 hysteresis type	/		Refer	ence Value	
531 F	Selects A12 hysteresis type	vpe (Mediur	n or Reference Val			
	 Indication condition and 				of A11 hysteresis type.	
	(p.24)					
8 120	A12 ON side				uctivity input: 0.001 μ S/cm	
000 I				Iempe	erature input: 1.0°C	
	• Sets the span of A12 Of		d in [A 12 hystores	ic turci	the ener of ONI/OFF	
	If <i>こは、F</i> (Medium Valu side will be the same va		eu in [A12 nysteres	is type],	, the span of ON/OFF	
	 Indication condition and 		na ara tha sama aa	those	of A11 ON side (n 25)	
		security rang	ye ale life sallie as	110560	11 UN SUE. (p.23)	

Character	Setting Item, Function, Setting Range	Factory Default				
A IZL	A12 OFF side	Conductivity input: 0.001 μ S/cm				
000 I		Temperature input: 1.0℃				
	Sets the span of A12 OFF side.					
	Indication condition and setting range are the same as					
82 Id	A21 hysteresis type	Reference Value				
Sdl F	Selects A21 hysteresis type (Medium or Reference Value).					
	• Indication condition and selection item are the same as those of A11 hysteresis type.					
	(p.24)					
82 IU	A21 ON side	Conductivity input: 0.001 μ S/cm				
<u>000 i</u>	- Sate the appen of A21 ON side	Temperature input: 1.0℃				
	 Sets the span of A21 ON side. If C C' F (Medium Value) is selected in [A21 hystereside) 	is type] the span of ON/OFF				
	side will be the same value.	is type], the span of ON/OFF				
		these of A11 ON side (p. 25)				
82 IL	Indication condition and setting range are the same as	Conductivity input: 0.001 μ S/cm				
	A21 OFF side	Temperature input: 1.0°C				
<u>000 I</u>	Sets the span of A21 OFF side.					
	 Indication condition and setting range are the same as 	those of A11 OFF side (p 25)				
8228	A22 hysteresis type	Reference Value				
531 F	Selects A22 hysteresis type (Medium or Reference Value)					
	 Indication condition and selection item are the same as t 					
8220	A22 ON side	Conductivity input: 0.001 ^µ S/cm				
000 I		Temperature input: 1.0℃				
	Sets the span of A22 ON side.					
	If	is type], the span of ON/OFF				
	side will be the same value.					
	Indication condition and setting range are the same as					
822L	A22 OFF side	Conductivity input: 0.001 μ S/cm				
<u>aoo i</u>	Sets the span of A22 OFF side.	Temperature input: 1.0℃				
	 Indication condition and setting range are the same as 	those of A11 OFF side (p. 25)				
8 I Io		0 seconds				
0	Sets A11 ON delay time.	0 Seconds				
	The A11 does not turn ON (under the conditions of turn	ing ON) until the time set in				
	[A11 ON delay time] elapses.					
	• Not available if $\Box = \Box = \Box$ (No action), $E = \Box \Gamma$ (Error out	tout) or <i>EBUL</i> (Fail output)				
	is selected in [A11 type].					
	Setting range: 0 to 9999 seconds					
8 IZo	A12 ON delay time	0 seconds				
0	Sets A12 ON delay time.					
ii	The A12 does not turn ON (under the conditions of turn	ing ON) until the time set in				
	[A12 ON delay time] elapses.					
	 Indication condition and setting range are the same as 	those of A11 ON delay time (p 26)				
82 lo	A21 ON delay time	0 seconds				
	Sets A21 ON delay time.					
· ·	The A21 does not turn ON (under the conditions of turn	ing ON) until the time set in				
	[A21 ON delay time] elapses.					
	 Indication condition and setting range are the same as 	those of A11 ON delay time (p 26)				
8220	A22 ON delay time	0 seconds				
	Sets A22 ON delay time.	0.0000103				
	The A22 does not turn ON (under the conditions of turn	ing ON) until the time set in				
	[A22 ON delay time] elapses.					
	 Indication condition and setting range are the same as 	those of A11 ON dolay time (n. 26)				
	- multation continuon and setting range are the same as	inuse of ATT ON delay little. (p.26)				

Character	Setting Item, Function, Setting Range	Factory Default
Rilc	A11 OFF delay time	0 seconds
0	Sets A11 OFF delay time.	
	The A11 does not turn OFF (under the conditions of t	urning OFF) until the time set in
	[A11 OFF delay time] elapses.	3 ,
	• Not available if ニニニニ (No action), Erof (Error of	output) or <i>F月I と</i> (Fail output)
	is selected in [A11 type].	
	Setting range: 0 to 9999 seconds	
R IZc	A12 OFF delay time	0 seconds
	Sets A12 OFF delay time.	
	The A12 does not turn OFF (under the conditions of t	urning OFF) until the time set in
	[A12 OFF delay time] elapses.	3 - ,
	• Indication condition and setting range are the same a	as those of A11 OFF delay time.(p.27)
R2 Ic	A21 OFF delay time	0 seconds
Ū	Sets A21 OFF delay time.	
	The A21 does not turn OFF (under the conditions of t	urning OFF) until the time set in
	[A21 OFF delay time] elapses.	
	 Indication condition and setting range are the same a 	as those of A11 OFF delay time.(p.27)
<i>822c</i>	A22 OFF delay time	0 seconds
<u> </u>	Sets A22 OFF delay time.	
	The A22 does not turn OFF (under the conditions of t	urning OFF) until the time set in
	[A22 OFF delay time] elapses.	
	 Indication condition and setting range are the same a 	as those of A11 OFF delay time.(p.27)
Riin	A11 High/Low limits independent	Conductivity input: 0.000 µS/cm
0000	lower side span	Temperature input: 0.0℃
	• Sets the lower side span of A11 High/Low limits inde	pendent action.
	Disabled when set to 0.000 or 0.0°C.	
	・Available when EcHL (Conductivity input High/Low	
	ر (Temperature input High/Low limits independe	ent action) is selected in [A11 type].
	Setting range:	
	Conductivity input: Measurement range low limit to N	leasurement range high limit (*1)
	Temperature input: 0.0 to 100.0°C (*2)	
R IZn	A12 High/Low limits independent	Conductivity input: 0.000 μ S/cm
0000	lower side span	Temperature input: 0.0°C
	 Sets the lower side span of A12 High/Low limits inde For the action, indication condition and setting range 	
	independent lower side span]. (p.27)	
82 In	A21 High/Low limits independent	Conductivity input: 0.000 μ S/cm
0000	lower side span	Temperature input: 0.0℃
	• Sets the lower side span of A21 High/Low limits inde	
	• For the action, indication condition and setting range	
	independent lower side span]. (p.27)	
822n	A22 High/Low limits independent	Conductivity input: 0.000 µS/cm
0000	lower side span	Temperature input: 0.0°C
	Sets the lower side span of A22 High/Low limits inde	
	• For the action, indication condition and setting range	, refer to [A11 High/Low limits
	independent lower side span]. (p.27)	
R P	A11 High/Low limits independent	Conductivity input: 0.000 μ S/cm
0000	upper side span	Temperature input: 0.0℃
	• Sets the upper side span of A11 High/Low limits inde	pendent action.
	Disabled when set to 0.000 or 0.0° C.	limite independent estimation
	• Available when $\mathcal{E} \subset \mathcal{H}'_{\mathcal{L}}$ (Conductivity input High/Low	
	「「「HL (Temperature input High/Low limits independ	ent action) is selected in [A11 type].
	Setting range: Conductivity input: Measurement range low limit to M	lossuromont rongo high limit (*4)
	Conductivity input: Measurement range low limit to N	ieasurement range nigh linnt (*1)
	Temperature input: 0.0 to 100.0°C (*2)	

(*1) The measurement unit and decimal point place follow the measurement range.(*2) The placement of the decimal point does not follow the selection. It is fixed.

Character		Setting Item, Function, Setting Range			Factory Default		
R IZP	A1	12 High/Low limits independent				ductivity input: 0.000 μ S/	/cm
<i>aooo</i>	up	upper side span				perature input: 0.0℃	
	• 5	 Sets the upper side span of A12 High/Low limits independent action. 					
	• F	• For the action, indication condition and setting range, refer to [A11 High/Low limits					
	ir	independent upper side value]. (p.27)					
RZ IP		1 High/Low limits in	dependent			Substitute input: 0.000 μ S	/cm
0000	-	per side span				berature input: 0.0℃	
		Sets the upper side sp		• ·			
		or the action, indication			eter to	[A11 High/Low limits	
8228		dependent upper side		27)	Conc	ductivity input: 0.000 μ_{S}	lam
0000		2 High/Low limits in	aepenaent			berature input: 0.0℃	CIII
	-	p er side span Sets the upper side sp	on of ∆22 Ц	iah/Low limits indons	-	•	
		for the action, indication					
		dependent upper side					
R I IH		1 hysteresis		•	$\mu_{S/c}$	m, Temperature input: 1.	0°C
000 I	• 5	Sets hysteresis of A11	High/Low lir	nits independent act	ion.	· · · ·	
	• A	vailable when EcHi	(Conductiv	ity input High/Low lin	nits ind	dependent action) or	
						n) is selected in [A11 typ	
		0 0	epending on	the selections of A1	1 type	and measurement range	э.
		(Table 8.2-6)	Mo	neuroment Denge		Sotting Pongo	1
		А Туре	IVIE	asurement Range 0.000 to 2.000 μS	/cm	Setting Range 0.001 to 0.200 <i>µ</i> S/cm	
				0.00 to 20.00 μ S/c		0.01 to 2.00 ^µ S/cm	-
				0.00 to 50.00 μ S/d		0.01 to 5.00 µS/cm	-
			Cell	0.000 to 0.200 mS		0.001 to 0.020 mS/m	-
			constant	0.000 to 2.000 mS		0.001 to 0.200 mS/m	-
			0.01/cm	0.000 to 5.000 mS		0.001 to 0.500 mS/m	
				0.00 to 2.00 mg/L		0.01 to 0.20 mg/L	
				0.0 to 20.0 mg/L		0.1 to 2.0 mg/L	
		Conductivity input		0.0 to 50.0 mg/L		0.1 to 5.0 mg/L	
		low limit action		0.00 to 20.00 µS/c	cm	0.01 to 2.00 µS/cm	
				0.00 to 50.00 µS/c	cm	0.01 to 5.00 µS/cm	
		Conductivity input		0.0 to 500.0 µS/cr	n	0.1 to 50.0 µS/cm	
		high limit action	Cell	0.000 to 2.000 mS	/m	0.001 to 0.200 mS/m	
			constant	0.000 to 5.000 mS	/m	0.001 to 0.500 mS/m	
			0.1/cm	0.00 to 50.00 mS/r	n	0.01 to 5.00 mS/m	
				0.0 to 20.0 mg/L		0.1 to 2.0 mg/L	-
				0 to 200 mg/L		1 to 20 mg/L	-
				0 to 500 mg/L		1 to 50 mg/L	-
			Cell	0.0 to 200.0 µS/cr		0.1 to 20.0 µS/cm	-
			constant 1.0/cm	0.00 to 20.00 mS/r	n	0.01 to 2.00 mS/m	-
		Temp. input low limit		0 to 200 mg/L		1 to 20 mg/L	-
		Temp. input high limit	0.0 to 100.	.0°C		0.1 to 10.0℃	
		(Abbreviation: Temp.: Te	mperature)				
R ISH	A1	2 hysteresis	Con	ductivity input: 0.001	$\mu_{S/c}$	m, Temperature input: 1.	0°C
000 I		Sets hysteresis of A12	-	•			
		or the indication cond					
82 IH		1 hysteresis				m, Temperature input: 1.	0°C
000 1		Sets hysteresis of A21	-	•			
	• F	• For the indication condition and setting range, refer to [A11 hysteresis]. (p.28)					

Character	Setting Item, Function, Setting Range	Factory Default			
822H	A22 hysteresis	Conductivity input: 0.001 µS/cm			
<u>aoo i</u>		Temperature input: 1.0℃			
	Sets hysteresis of A22 High/Low limits independent a	ction.			
	• For the indication condition and setting range, refer to [A11 hysteresis]. (p.28)				
lErr	A output when input errors occur Disabled				
oFF	• Selects whether to enable or disable $A \square \square$ output in the event of an input error such as a				
	conductivity sensor burnout or short circuit.				
	If Enabled is selected, $A \square \square$ output and $A \square \square$ output	status will be maintained in the			
	event of an input error.				
	If Disabled is selected, A output and A output	status will be turned OFF in the			
	event of an input error.				
	• Available when $\mathcal{E}_{\mathcal{L}} = \mathcal{L}$ (Conductivity input low limit a	action), $E = H$ (Conductivity input			
	high limit action), デュアム (Temperature input low limi	t action) or <i>にうPH</i> (Temperature			
	input high limit action) is selected in [A $\Box\Box$ type].				
	Selection item:				
	an Enabled				
	oFF⊡: Disabled				
<u>FI [</u>	Conductivity input filter time constant	0.0 seconds			
<i>00</i>	 Sets Conductivity input filter time constant. 				
	If the value is set too large, it affects $A \Box \Box$ output due	to the delay of response.			
	Setting range: 0.0 to 10.0 seconds				
Eho	Conductivity input sensor correction	0.000 µS/cm			
<i>aooo</i>	 Sets conductivity input sensor correction value. 				
	This corrects the measured value from the Conduction	-			
	be set at the exact location where measurement				
	conductivity may deviate from the conductivity in the				
	desired conductivity can be obtained by adding a sense				
	However, it is effective within the measurement range regardless of the sensor correction				
	value.				
	Conductivity after sensor correction = Current conduc	tivity + (Sensor correction value)			
	• Setting range: ±10% of measurement span (*)				
<u>466 r</u>	3-electrode Conductivity Sensor resistance	0 Ω			
<i>D</i>	If the 3-electrode Conductivity Sensor is used, set the	e resistance value of 3-electrode			
	Conductivity Sensor.				
	If the 3-electrode Conductivity Sensor is used, set the				
	Measurement will be made within the measurement ra	ange of cell constant 1.0/cm.			
	See {Table 8.2-3) (p.22).				
dFcT	• Setting range: 0 to 100 Ω	20			
0-c, [20	Conductivity inputs for moving averageSet the number of conductivity inputs used to obtain r	20 moving average			
\!⊆ ⊑/	An average conductivity input value is calculated usin	• •			
	conductivity inputs. The conductivity input value is rep	-			
	However, the conductivity input moving average funct				
	calibration mode or in temperature calibration mode.				
	• Setting range: 1 to 120				
(*) =	asurement unit and decimal point place follow the measurement r				

(*) The measurement unit and decimal point place follow the measurement range.

8.3 Temperature Input Group

To enter the Temperature Input Group, follow the procedure below.

(1) $F.nc.\vec{c}$ Press the \square key twice in Conductivity/Temperature Display Mode.

2 f c ā Press the Key.

The unit will enter Temperature Input Group, and "Temperature compensation method" will appear.

Character	Setting Item, Function, Setting Range	Factory Default	
Γ c ñ	Temperature compensation method	NaCl	
, cn∟ nRcL	 Selects Temperature compensation method. DBcL: Temperature compensation is conducted using tem NaCl. Select when the main salt ingredient in a sa CcDE: Temperature compensation is conducted using tem (%/°C) and a randomly selected reference tempera FUrE: Temperature compensation is conducted using temperature deionized water. 	perature characteristics of mple is NaCl. nperature coefficient ture.	
	□FF□ : No temperature compensation		
EcoE	Temperature coefficient	2.00 %/ °C	
2.00	 Sets the temperature coefficient. If temperature coefficient is set to 2.00 %/°C, this value can be used for most aqueous solutions. If temperature coefficient of an aqueous solution is already-known, set the value. If temperature coefficient is set to 0.00 %/°C, conductivity without temperature coefficient is set to 0.00 %/°C, conductivity without temperature compensation will be indicated. 		
	• Available only when $\int c a E$ is selected in [Temperature co	impensation methodj.	
hind	• Setting range: -5.00 to 5.00 %/℃ Reference temperature	25.0℃	
25.0	Sets the reference temperature for temperature compensat		
	• Setting range: 5.0 to 95.0° (The placement of the decimal point		
dP2	Decimal point place	1 digit after decimal point	
0 0	 Selects decimal point place. Image and received point Image and received point Image and received point 		
conE	Pt100 input wire type	3-wire type	
Pr[]3	 Selects the input wire type of Pt100. Not available for the Temperature element Pt1000. This setting item and all subsequent items are available only value) is selected in [Temperature Display when no temperative of PT 2 : 2-wire type PT 3 : 3-wire type 		
cAbL	Cable length correction	0.0 m	
	 Sets the cable length correction value. Available only when PCC2 (2-wire type) is selected in [Pt100 input wire type]. Not available for the Temperature element Pt1000. Setting range: 0.0 to 100.0 m 		
chEc	Cable cross-section area	0.30 mm ²	
□030	 Sets the cable cross-section area. Available only when <i>PC C</i> (2-wire type) is selected in [Pt10 Not available for the Temperature element Pt1000. Setting range: 0.10 to 2.00 mm² 	0 input wire type].	
FIFZ	Temperature input filter time constant	0.0 seconds	
<i>00</i>	 Sets Temperature input filter time constant. If the value is set too large, it affects A output due to the Setting range: 0.0 to 10.0 seconds 	e delay of response.	

Character	Setting Item, Function, Setting Range Factory Default		
dFcF	Temperature inputs for moving average	20	
05	 Set the number of temperature inputs used to obtain moving An average temperature input value is calculated using the temperature inputs. The temperature input value is replaced However, the temperature input moving average function is calibration mode. Setting range: 1 to 120 	selected number of I every input sampling period.	

8.4 Basic Function Group

To enter the Basic Function Group, follow the procedure below.

- a.f.E.r Press the □ key 3 times in Conductivity/Temperature Display Mode.
 2 Loct Press the ﷺ key.

The unit will enter the Basic Function Group, and "Set value lock" will appear.

Character	Setting Item, Function, Setting Range	Factory Default		
Loct	Set value lock	Unlock		
	Locks the set values to prevent setting errors.			
ll	Selection item:			
	Unlock): All set values can be changed.			
	$L \Box c$ / (Lock 1): None of the set values can be changed.			
	とヮ゠゙゙゙゙゙゚ (Lock 2): Only A11, A12, A21 and A22 values can	be changed.		
		$L \Box \Box \exists$ (Lock 3): All set values – except Sensor cell constant, Measurement		
	unit, Measurement range, Conductivity Z	ero and Span adjustment		
	values, Temperature calibration value, T			
	and Span adjustment values, Transmiss	•		
		adjustment values – can be temporarily changed. However, they		
		revert to their previous value after the power is turned off because		
	they are not saved in the non-volatile IC memory.			
		Do not change the A11, A12, A21 or A22 type. If they are changed,		
	they will affect other setting items.			
	Be sure to select Lock 3 when changing	the set value frequently via		
	software communication. (If a value set v			
	the same as the value before the setting			
	in non-volatile IC memory.)			
6746	Communication protocol	Shinko protocol		
nañL	Selects communication protocol.			
	• Selection item: ヮヮヮ゙と: Shinko protocol			
	ಸ್ತ್ <i>ಷದ</i> ∺: MODBUS ASCII mode			
	ಗಾರ್ಡ: MODBUS RTU mode			
cñno	Instrument number	0		
	• Sets the instrument number of each unit. (The instrument n	umbers should be set one by		
	one when multiple instruments are connected.)			
	Setting range: 0 to 95	0000		
<u>c75</u> P	Communication speed	9600 bps		
<u> </u>	• Selects a communication speed equal to that of the host computer.			
	• Selection item: 55: 9600 bps			
	38400 bps			
c AFT	Data bit/Parity	7 bits/Even		
	Selects data bit and parity.			
7887	Selection item:			
	Bran : 8 bits/No parity			
	יווי אין אין אין אין אין אין אין אין אין אי			
	BEBA : 8 bits/Even			
	ראין דער			
	ಕ್ರದದ : 8 bits/Odd			
	ೌಧದರ : 7 bits/Odd			

Character	Setting Item, Function, Setting Range	Factory Default		
ะกับโ	Stop bit	1 bit		
1	Selects the stop bit.			
	Selection item:			
[rol	Transmission output 1 type	Conductivity transmission		
Ec	If $\Box F F \square$ (No temperature compensation) is selected in [Temperature compensation method (p.30)], and if $F E \overline{\Box} F$ (Temperature transmission) is selected, then Transmi			
	output 1 value will differ depending on the selection in [Temperature Display when ne temperature compensation (p.34)] as follows. If ロデデロ (Unlit) or 'ったゴロ (Reference temperature) is selected, the value set in			
	 [Reference temperature (p.30)] will be output. If P'B (Measured value) is selected, the measured value will be output. Available when Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered. 			
	• Selection item:			
	E c []]: Conductivity transmission 「E GP: Temperature transmission			
Ггні	Transmission output 1 high limit	2.000 <i>µ</i> S/cm		
2000				
	 Sets Transmission output 1 high limit value. (This value correport If Transmission output 1 high limit and low limit are set to the 			
	output 1 will be fixed at 4 mA DC.			
	Available when Transmission output 1 (TA option) or Transmission ot 1 (TA option	mission output 2 (TA2 option)		
	is ordered.			
	Setting range:			
	If $\mathcal{E}_{\mathcal{E}}$ (Conductivity transmission) is selected in [Transmission]	mission output 1 type]:		
	Transmission output 1 low limit to Conductivity range high limit			
	If $\Gamma E \overline{A} P$ (Temperature transmission) is selected in [Trans			
	Transmission output 1 low limit to 100.0℃			
F-L I	Transmission output 1 low limit	0.000 <i>µ</i> S/cm		
0000	• Sets Transmission output 1 low limit value. (This value correp	onds to 4 mA DC output.)		
	If Transmission output 1 high limit and low limit are set to th	e same value, Transmission		
	output 1 will be fixed at 4 mA DC. • Available when Transmission output 1 (TA option) or Transmission output 2 (TA2 option)			
	is ordered.			
	• Setting range:			
	If $\mathcal{E}_{\mathcal{E}}$ (Conductivity transmission) is selected in [Transmission]			
	Conductivity range low limit to Transmission output 1 high if $\mathcal{F}\mathcal{F}\mathcal{F}\mathcal{P}$ (Temperature transmission) is selected in [Transmission]			
	0.0° to Transmission output 1 high limit	mission output i typej.		
[raz	Transmission output 2 type	Temperature transmission		
ΓΕΆΡ	Selects Transmission output 2 type.			
	If $\varphi \in F$ (No temperature compensation) is selected in [Temperature compensation			
	method (p.30)], and if $\Gamma E \overline{\alpha} P$ (Temperature transmission) is selected, then Transmission			
	output 2 value will differ depending on the selection in [Tem			
	temperature compensation (p.34)] as follows.			
	If ロケチロ (Unlit) or ケーロロ (Reference temperature) is	selected, the value set in		
	 [Reference temperature (p.30)] will be output. If <i>PB</i> (Measured value) is selected, the measured value will be output. • Available only when Transmission output 2 (TA2 option) is ordered. 			
	Selection item:			
	$E \subset \Box$: Conductivity transmission			
	ΓΕΞΡ: Temperature transmission			

Г-Н2 1000	Transmission output 2 high limit Sets Transmission output 2 high limit value. (This value) 	100.0°C		
1000	Sets Transmission output 2 high limit value. (This val			
	 Sets Transmission output 2 high limit value. (This value correponds to 20 mA DC output.) If Transmission output 2 high limit and low limit are set to the same value, Transmission output 2 will be fixed at 4 mA DC. Available only when Transmission output 2 (TA2 option) is ordered. Setting range: If <i>E</i> = [] (Conductivity transmission) is selected in [Transmission output 2 type]: Transmission output 2 low limit to Conductivity range high limit 			
	If $\int E \vec{n} \vec{P}$ (Temperature transmission) is selected in [Transmission output 2 type]:			
<i>[-12</i>	Transmission output 2 low limit to 100.0℃ Transmission output 2 low limit 0.0℃			
	 Sets Transmission output 2 low limit Sets Transmission output 2 low limit value. (This value correponds to 4 mA DC output.) If Transmission output 2 high limit and low limit are set to the same value, Transmission output 2 will be fixed at 4 mA DC. Available only when Transmission output 2 (TA2 option) is ordered. Setting range: If <i>E</i> c (Conductivity transmission) is selected in [Transmission output 2 type]: Conductivity range low limit to Transmission output 2 high limit If <i>F</i> c c (Temperature transmission) is selected in [Transmission output 2 type]: 			
	0.0° to Transmission output 2 high limit			
Гге I ЪЕFН	Transmission output 1 status when calibrating Last value HOLD • Selects Transmission output 1 output status when calibrating conductivity. • Available when Transmission output 1 (TA option) or Transmission output 2 (TA2 o is ordered. • Selection item: • Selection item:			
	 bEFH: Last value HOLD (Retains the last value before conductivity calibration, and outputs it.) っEFH: Set value HOLD (Outputs the value set in [Transmission output 1 value HOLD when calibrating].) アピH: Measured value (Outputs the measured value when calibrating conductivity.) 			
5-51	Transmission output 1 value HOLD when Conc	luctivity transmission: 0.000 μ S/cm		
0.000	calibrating Temp	erature transmission: 0.0°C		
	 Sets Transmission output 1 value HOLD. Available only when <i>っと「H</i> (Set value HOLD) is status when calibrating]. Setting range: When <i>とこ</i> (Conductivity transmission) is select Conductivity range low limit to Conductivity range When <i>「とっP</i> (Temperature transmission) is select 0.0 to 100.0°C 	ted in [Transmission output 1 type]: e high limit		
[re2	Transmission output 2 status when calibrating			
ЬЕFН	 Selects Transmission output 2 output status when Available only when Transmission output 2 (TA2 or Selection item:	otion) is ordered. refore conductivity calibration, and [Transmission output 2 value HOLD		

Character	Setting Item, Function, Setting R	ange	Factory D	efault
1-42	Transmission output 2 value HOLD when		ansmission: 0.000	
<i>00</i>	calibrating	Temperature transmission: 0.0°C		
	 Sets Transmission output 2 value HOLD. Available only when 'っとい HOLD' is selected in [Transmission output 2] 			
				output 2
	status when calibrating].			
	• Setting range:			
	When $\mathcal{E}_{\mathcal{C}}$ (Conductivity transmission) i			t 2 type]:
	Conductivity range low limit to Conductivity range high limit When $f E \bar{n}F$ (Temperature transmission) is selected in [Transmission output 2 type]: 0.0 to 100.0°C			
				it 2 type]:
	Auto-light function	L	Disabled	
	Selects Auto-light Enabled/Disabled. Selection itom:			
	Selection item: Isabled			
	$U \neg E \square$: Enabled			
di 4P	Display selection		Conductivity/Tem	perature
811	 Selects items to be indicated on the Conduct 			
	Selection item:	, , ,		
	Conductivity Display	Temperatu	ure Display	
	RLL Conductivity	Temperature		
	Ec Conductivity	No indication		
	TEAP No indication	Temperature		
	nenE No indication	No indication		
FI AE	Indication time		00.00	
0000	 Sets the indication time of the displays from 	no key operation	n until displays go	o off.
	Displays remain lit when set to 00.00.			
	If any errors occur or any key is pressed wh		• •	ght up.
	• Not available if $\Box \Box \Box \overline{\Sigma} \overline{\Sigma}$ (No indication) is se	elected in [Display	y selection].	
	Setting range:			
	00.00 (Remains lit)			
	00.01 to 60.00 (Minutes.Seconds)	T		
oFdP	Temperature Display when no temperature Unlit			
oFF	compensation	L		
	• Selects an item to be indicated on the Temp			
	temperature compensation) is selected in [Te			-
	 The placement of the decimal point for the reference temperature follows the selection. Available only when ロデドロ (No temperature compensation) is selected in [Temperature compensation method]. Selection item: ロデドロ Unlit ロデビ Unlit ロデビ Measured value 			
				emperature

Character	Setting Item, Function, Setting Range	Factory Default		
R IoF	A1 output allocation	A11 type		
811	Selects A1 output allocation.			
	 For A1 output, A11 type, A12 type, A21 type and/or A22 type can be allocated. Output is OR output. Not available if Transmission output 2 (TA2 option) is ordered. Selection item: 			
	<i>用 ↓ I</i> □ : A11 type			
	<i>用 </i>			
	<i>RE</i> /□ : A21 type			
	<i>₽22</i> ⊡ : A22 type			
	<i>用 I用L</i> :A11, A12 types			
	RERL : A21, A22 types			
	<i>팀 I홈근</i> :A11, A21 types			
	R2R2 : A12, A22 types			
	RLL : A11, A12, A21, A22 types			
RZoF	A2 output allocation	A21 type		
82 /	Selects A2 output allocation.			
	For A2 output, A11 type, A12 type, A21 type and/or A22 type	e can be allocated.		
	Output is OR output.	$(\mathbf{T} \mathbf{A} \mathbf{C})$		
	 Not available if Transmission output 1 (TA option) or Transn is ordered. 			
	 Selection items are the same as those of A1 output allocation 	on (n.35)		
oon l	Output ON time when A1 output ON	0 seconds		
	Sets Output ON time when A1 output is ON.			
	If Output ON time and OFF time are set, A1 output can be to	urned ON/OFF in a		
	configured cycle when A1 output is ON. (Fig. 8.4-1)			
	 Not available if Transmission output 2 (TA2 option) is ordered 	ed.		
	Setting range: 0 to 9999 seconds			
	Timing chart (Output ON time and OFF time when A	A1 output is ON)		
	ON			
	Actual A1 output			
	OFF	ON time is turned		
	A1 output to which ON	OFF, caused by the		
	A l'output to which	actual A1 output turning OFF.		
	ON time and OFF time are set. OFF			
	ON OFF ON OFF			
	time time time			
		-		
	(Fig. 8.4-1)			

Character	Setting Item, Function, Setting Range	Factory Default	
00F 1	Output OFF time when A1 output ON	0 seconds	
	Sets Output OFF time when A1 output is ON.		
	If Output ON time and OFF time are set, A1 output can be turned ON/OFF in a		
	configured cycle when A1 output is ON. (Fig. 8.4-1) (p.35)		
	• Not available if Transmission output 2 (TA2 option) is order	ed.	
	Setting range: 0 to 9999 seconds		
oond	Output ON time when A2 output ON	0 seconds	
0	Sets Output ON time when A2 output is ON.		
	If Output ON time and OFF time are set, A2 output can be t	urned ON/OFF in a	
	configured cycle when A2 output is ON. (Fig. 8.4-1) (p.35)		
	• Not available if Transmission output 1 (TA option) or Transm	nission output 2 (TA2 option)	
	is ordered.	,	
	Setting range: 0 to 9999 seconds		
ooF2	Output OFF time when A2 output ON	0 seconds	
D	Sets Output OFF time when A2 output is ON.		
	If Output ON time and OFF time are set, A2 output can be t	urned ON/OFF in a	
	configured cycle when A2 output is ON. (Fig. 8.4-1) (p.35)		
	Not available if Transmission output 1 (TA option) or Transmission	nission output 2 (TA2 option)	
	is ordered.		
	Setting range: 0 to 9999 seconds		
RIE	A1 conductivity input error alarm A	No action	
	• Selects an A type in order to assess A1 conductivity inp		
	Not available if Transmission output 2 (TA2 option) is ordered	ed.	
	Selection item Inclusion		
	<i>R I Z</i> : A12 type		
	<i>R2</i> /□ : A21 type		
	<i>B22</i> ⊡ : A22 type		
828	A2 conductivity input error alarm A	No action	
	• Selects A type in order to assess A2 conductivity input	error alarm.	
	Not available if Transmission output 1 (TA option) or Transm	nission output 2 (TA2 option)	
	is ordered.		
	Selection item		
	<i>R I I</i> ⊡ : A11 type <i>R I 2</i> ⊡ : A12 type		
	<i>R2 I</i> □ : A12 type		
	$\overrightarrow{R22}$: A21 type		

Character	Setting Item, Function, Setting Range	Factory Default	
R IEo	A1 conductivity input error alarm band	0.000 µS/cm	
0000	when A output ON		
	• Sets the band to assess A1 conductivity input error alarm when A output is ON.		
	Refer to 'Conductivity Input Error Alarm' on p.38.		
	Not available if Transmission output 2 (TA2 option) is ordered	ed.	
	Setting range:		
	Conductivity range low limit to Conductivity range high limit		
	When set to 0.000, Conductivity input error alarm is disable		
R Iof	A1 conductivity input error alarm time	0 seconds	
	when A output ON		
	Sets time to assess A1 conductivity input error alarm when	A output is ON.	
	Refer to 'Conductivity Input Error Alarm' on p.38.		
	Not available if Transmission output 2 (TA2 option) is ordered	əd.	
	• Setting range:		
	0 to 9999 seconds or minutes (Time unit follows the select	ion in [Conductivity input	
	error alarm time unit].)		
R IEc	When set to 0, Conductivity input error alarm is disabled.	0.000 <i>µ</i> S/cm	
	A1 conductivity input error alarm band $0.000 \ \mu$ S/cm when A \Box output OFF		
	 Sets the band to assess A1 conductivity input error alarm w 		
	Refer to 'Conductivity Input Error Alarm' on p.38.		
	Not available if Transmission output 2 (TA2 option) is ordered.		
	Setting range:		
	Conductivity range low limit to Conductivity range high limit		
	When set to 0.000, Conductivity input error alarm is disabled.		
$R I_{C}\Gamma$	A1 conductivity input error alarm time	0 seconds	
	when A a output OFF		
	• Sets time to assess A1 conductivity input error alarm when	A output is OFF.	
	Refer to 'Conductivity Input Error Alarm' on p.38.		
	• Not available if Transmission output 2 (TA2 option) is ordered	ed.	
	Setting range:		
	0 to 9999 seconds or minutes (Time unit follows the select	ion in [Conductivity input	
	error alarm time unit].)		
	When set to 0, Conductivity input error alarm is disabled.		
R2Eo	A2 conductivity input error alarm band	0.000 µS/cm	
0000	when A output ON		
	Sets the band to assess A2 conductivity input error alarm w	hen A \Box output is ON.	
	Refer to 'Conductivity Input Error Alarm' on p.38.		
	Not available if Transmission output 1 (TA option) or Transn	nission output 2 (TA2 option)	
	is ordered.		
	Setting range:		
	Conductivity range low limit to Conductivity range high limit		
	When set to 0.000, Conductivity input error alarm is disabled.		

Character	Setting Item, Function, Setting Range	Factory Default		
8201	A2 conductivity input error alarm time	0 seconds		
<i>0</i>	when A output ON			
	• Sets time to assess A2 conductivity input error alarm when A output is ON.			
	Refer to 'Conductivity Input Error Alarm' on p.38.	-		
	Not available if Transmission output 1 (TA option) or Transm	nission output 2 (TA2 option)		
	is ordered.			
	Setting range:			
	0 to 9999 seconds or minutes (Time unit follows the select	ion in [Conductivity input		
	error alarm time unit].)			
	When set to 0, Conductivity input error alarm is disabled.			
826	A2 conductivity input error alarm band	0.000 <i>µ</i> S/cm		
0000	when A output OFF			
	Sets the band to assess A2 conductivity input error alarm w	when A \Box output is OFF.		
	Refer to 'Conductivity Input Error Alarm' on p.38.			
	Not available if Transmission output 1 (TA option) or Transmission output 1	nission output 2 (TA2 option)		
	is ordered.			
	Setting range: Conductivity range high limit			
	When set to 0.000, Conductivity input error alarm is disabled.			
RZel	A2 conductivity input error alarm time	0 seconds		
	when $A \square$ output OFF	0 3000103		
	Sets time to assess A2 conductivity input error alarm when	A output is OFF		
	Refer to 'Conductivity Input Error Alarm' on p.38.			
	•Not available if Transmission output 1 (TA option) or Transm	nission output 2 (TA2 option)		
	is ordered.			
	• Setting range:			
	0 to 9999 seconds or minutes (Time unit follows the select	ion in [Conductivity input		
	error alarm time unit].) When set to 0, Conductivity input error alarm is disabled.			
ñ_5	Conductivity input error alarm time unit	Second(s)		
4Ec[]	Selects conductivity input error alarm time unit.			
	Selection item:			
	∽E ⊂□: Second(s)			
	ຕິ/ ຕ⊡ : Minute(s)			

Conductivity Input Error Alarm

Conductivity input error alarm is used for detecting actuator trouble.

Even if Conductivity input error alarm time has elapsed – if conductivity input does not become higher than conductivity input error alarm band – the instrument assumes that actuator trouble has occurred, and sets Status flag 2.

In Serial communication, status can be read by reading Status flag 2 (A1, A2 conductivity input error alarm output flag bit).

Conductivity input error alarm is disabled during Conductivity Zero or Span adjustment.

Conductivity input error alarm is enabled only when \mathcal{E}_{c} , \mathcal{L} (Conductivity input low limit action) or \mathcal{E}_{c} , \mathcal{H} (Conductivity input high limit action) is selected in [A11, A12, A21, A22 type (pp.23, 24)].

9. Calibration

Conductivity calibration mode, Temperature calibration mode, and Transmission output 1 and 2 adjustment modes are described below.

9.1 Conductivity Calibration Mode

Deterioration of the 2-electrode Conductivity Sensor might cause the cell constant to change. To correct the changed cell constant, conductivity calibration must be performed. Calibrate Conductivity Zero adjustment first, followed by Conductivity Span adjustment. During conductivity calibration, A action is forced OFF.

However, if $L \Box c \downarrow (Lock 1)$, $L \Box c c \downarrow (Lock 2)$ or $L \Box c c \downarrow (Lock 3)$ is selected in [Set value lock (p.31)], the unit cannot move to Conductivity calibration mode.

The following outlines the procedure for conductivity calibration.

- When selecting bEFH (Last value HOLD) in [Transmission output 1 status when calibrating (p.33)] or [Transmission output 2 status when calibrating (p.33)], select it while the 2-electrode Conductivity Sensor is being immersed in the solution currently measured.
- 2 Do not immerse the 2-electrode Conductivity Sensor in the standard solution.
- ^③ Press and hold the 🖂 key and 💿 key (in that order) together for 3 seconds in Conductivity/ Temperature Display Mode.

The unit enters Conductivity calibration Zero adjustment mode, and indicates the following.

Display	Indication	
Conductivity Display	$B \not = J \not =$ and conductivity are indicated alternately.	
Temperature Display	Conductivity Zero adjustment value	

④ Set the Conductivity Zero adjustment value with the △ or ▽ key so that the conductivity becomes 0. If conductivity is 0, this adjustment is not necessary.

Setting range of the Conductivity Zero adjustment value differs depending on the measurement range. See (Table 9.1-1.). (p. 40)

However, it is effective within the measurement range regardless of the Conductivity Zero adjustment value.

(Table 9.1-1)

Measurement Range		Conductivity Zero Adjustment Value Setting Range
	2.000 μ S/cm	-0.200 to 0.200 <i>µ</i> S/cm
	20.00 µS/cm	-2.00 to 2.00 <i>µ</i> S/cm
	50.00 µS/cm	-5.00 to 5.00 µS/cm
Cell	0.200 mS/m	-0.020 to 0.020 mS/m
constant	2.000 mS/m	-0.200 to 0.200 mS/m
0.01/cm	5.000 mS/m	-0.500 to 0.500 mS/m
	2.00 mg/L	-0.20 to 0.20 mg/L
	20.0 mg/L	-2.0 to 2.0 mg/L
	50.0 mg/L	-5.0 to 5.0 mg/L
	20.00 µS/cm	-2.00 to 2.00 µS/cm
	50.00 μ S/cm	-5.00 to 5.00 µS/cm
	500.0 µS/cm	-50.0 to 50.0 <i>µ</i> S/cm
Cell	2.000 mS/m	-0.200 to 0.200 mS/m
constant	5.000 mS/m	-0.500 to 0.500 mS/m
0.1/cm	50.00 mS/m	-5.00 to 5.00 mS/m
	20.0 mg/L	-2.0 to 2.0 mg/L
	200 mg/L	-20 to 20 mg/L
	500 mg/L	-50 to 50 mg/L
Cell	200.0 ^µ S/cm	-20.0 to 20.0 <i>µ</i> S/cm
constant	20.00 mS/m	-2.00 to 2.00 mS/m
1.0/cm	200 mg/L	-20 to 20 mg/L

^⑤ Press the ₩ key.

Conductivity Zero adjustment value will be registered, and the unit will move to Conductivity calibration Span adjustment mode.

The following is indicated in Conductivity calibration Span adjustment mode.

Display	Indication	
Conductivity Display	B d d - and conductivity are indicated alternately.	
Temperature Display	Conductivity Span adjustment value	

- $^{\textcircled{6}}$ Immerse the 2-electrode Conductivity Sensor in the standard solution.
- ⑦ Set the Conductivity Span adjustment value with the △ or ▽ key, checking the conductivity. Conductivity multiplied by the Span adjustment value is displayed. Conductivity Span adjustment value: 0.700 to 1.300

8 Press the street key.

Conductivity Span adjustment value will be registered, and the unit will revert to Conductivity/ Temperature Display Mode.

9.2 Temperature Calibration Mode

To calibrate a temperature, set a temperature calibration value.

If $\square F F \square$ (No temperature compensation) is selected in [Temperature compensation method (p.30)], Temperature calibration mode is not available.

The unit cannot enter Temperature calibration mode in the following cases: • When $\angle \Box \Box = i$ (Lock 1), $\angle \Box \Box \equiv i$ (Lock 2) or $\angle \Box \Box \equiv i$ (Lock 3) is selected in [Set value lock (p.31)].

When a sensor cannot be set at the exact location where measurement is desired, the resulting measured temperature may deviate from the temperature in the desired location. In this case, the desired temperature can be set for the desired location by setting a temperature calibration value. However, it is effective within the input rated range regardless of the temperature calibration value. Temperature after calibration = Current temperature + (Temperature calibration value) (e.g.) When current temperature is 23.5° C,

If temperature calibration value is set to 1.5° C: $23.5 + (1.5) = 25.0^{\circ}$ C If temperature calibration value is set to -1.5° C: $23.5 + (-1.5) = 22.0^{\circ}$ C

The following outlines the procedure for temperature calibration.

(1) Press and hold the 🖾 key and 💿 key (in that order) together for 3 seconds in Conductivity/ Temperature Display Mode.

The unit proceeds to Temperature calibration mode, and indicates the following.

Display	Indication	
Conductivity Display	ካወ and temperature are indicated alternately.	
Temperature Display	Temperature calibration value	

② Set a temperature calibration value with the △ or ▽ key, checking temperature. Setting range: -10.0 to 10.0°C

③ Press the **ET** key.

Temperature calibration is complete, and the unit reverts to Conductivity/Temperature Display Mode.

9.3 Transmission Output 1 Adjustment Mode

Fine adjustment of Transmission output 1 is performed.

WIL-102-ECL is adjusted at the factory, however, differences may occur between the indication value of the connected equipment (recorders, etc.) and output value of this instrument. In this case, perform Transmission output 1 Zero and Span adjustments.

Transmission output 1 adjustment mode is available when Transmission output 1 (TA option) or Transmission output 2 (TA2 option) is ordered.

The unit cannot enter Transmission output 1 Zero adjustment mode in the following cases:

- During Conductivity Zero or Span adjustment, or temperature calibration
- When $L \Box c \downarrow$ (Lock 1), $L \Box c c \downarrow$ (Lock 2) or $L \Box c J$ (Lock 3) is selected in [Set value lock (p.31)]

The following outlines the procedure for Transmission output 1 adjustment.

 Press and hold the △ key and ﷺ key (in that order) together for 3 seconds in Conductivity/Temperature Display Mode.

The unit enters Transmission output 1 Zero adjustment mode, and indicates the following.

Display	Indication	
Conductivity Display	RJE I	
Temperature Display	Transmission output 1 Zero adjustment value	

② Set a Transmission output 1 Zero adjustment value with the △ or ▽ key, while viewing the value indicated on the connected equipment (recorders, etc.). Setting range: ±5.00% of Transmission output 1 span

③ Press the 📰 key.

The unit enters Transmission output 1 Span adjustment mode, and indicates the following.

Display	Indication	
Conductivity Display	RJ5 I	
Temperature Display	Transmission output 1 Span adjustment value	

- ④ Set a Transmission output 1 Span adjustment value with the △ or ▽ key, while viewing the value indicated on the connected equipment (recorders, etc.). Setting range: ±5.00% of Transmission output 1 span
- $^{(5)}$ Press the \square key.

The unit reverts to Transmission output 1 Zero adjustment mode. Repeat steps 2 to 5 if necessary.

6 To finish Transmission output 1 adjustment, press the 🔤 key in Transmission output 1 Span adjustment mode.

The unit reverts to Conductivity/Temperature Display Mode.

9.4 Transmission Output 2 Adjustment Mode

Fine adjustment of Transmission output 2 is performed.

WIL-102-ECL is adjusted at the factory, however, differences may occur between the indication value of the connected equipment (recorders, etc.) and output value of this instrument.

In this case, perform Transmission output 2 Zero and Span adjustments.

Transmission output 2 adjustment mode is available only when Transmission output 2 (TA2 option) is ordered.

The unit cannot enter Transmission output 2 Zero adjustment mode in the following cases:

- During Conductivity Zero or Span adjustment, or temperature calibration
- When $L \Box c \downarrow$ (Lock 1), $L \Box c c \downarrow$ (Lock 2) or $L \Box c \dashv$ (Lock 3) is selected in [Set value lock (p.31)]

The following outlines the procedure for Transmission output 2 adjustment.

The unit enters Transmission output 2 Zero adjustment mode, and indicates the following.

Display	Indication	
Conductivity Display	RJEZ	
Temperature Display	Transmission output 2 Zero adjustment value	

③ Press the \blacksquare key.

The unit enters Transmission output 2 Span adjustment mode, and indicates the following.

Display	Indication	
Conductivity Display	8342	
Temperature Display	Transmission output 2 Span adjustment value	

④ Set a Transmission output 2 Span adjustment value with the △ or ▽ key, while viewing the value indicated on the connected equipment (recorders, etc.).
 Setting range: ±5.00% of Transmission output 2 span

 \bigcirc Press the \bigcirc key.

The unit reverts to Transmission output 2 Zero adjustment mode. Repeat steps (2) to (5) if necessary.

6 To finish Transmission output 2 adjustment, press the key in Transmission output 2 Span adjustment mode.

The unit reverts to Conductivity/Temperature Display Mode.

10. Measurement

10.1 Starting Measurement

After mounting to the control panel, wiring, setup and calibration are complete, turn the power to the instrument ON.

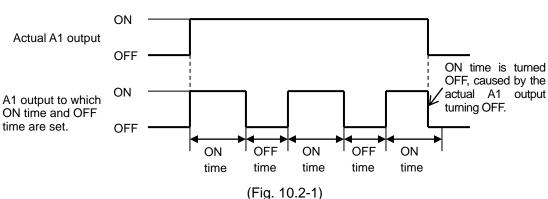
For approximately 4 seconds after the power is switched ON, the input characters are indicated on the Conductivity Display and Temperature Display. See (Table 10.1-1).

(Table 10.1-1)

Display	Character	Measurement Unit	
	conð	Conductivity (µS/cm)	
Conductivity Display	5/	Conductivity (mS/m)	
	/ d'h	TDS conversion (mg/L)	
Display	Character	Input Temperature Specification (*)	Selection Item in [Pt100 Input Wire Type] (p.30)
	PF_2	DH400	Fr Z: 2-wire type
Temperature Display	PF 3	Pt100	<i>₽Г</i>
	PF 10	Pt1000	

(*) This input temperature specification was specified at the time of ordering.

During this time, all outputs are in OFF status, and the LED indicators except PWR Indicator are unlit. Measurement will then start, indicating the item selected in [Display selection (p.34)].


10.2 A Output

When $\mathcal{E}_{\mathcal{A}}\mathcal{L}$ (Conductivity input low limit action), $\mathcal{E}_{\mathcal{A}}\mathcal{H}$ (Conductivity input high limit action), $\mathcal{E}_{\mathcal{A}}\mathcal{H}\mathcal{L}$ (Temperature input low limit action), or $\mathcal{E}_{\mathcal{A}}\mathcal{H}\mathcal{H}$ (Temperature input high limit action) is selected in [A11, A12, A21, A22 type (pp. 23, 24)], the A output is turned ON if the measured value exceeds or drops below the A value.

When $\mathcal{E} \subset \mathcal{H}_{\mathcal{L}}$ ((Conductivity input High/Low limits independent action), $\mathcal{E} \subset \mathcal{H}_{\mathcal{L}}$ (Temperature input High/Low limits independent action) is selected in [A11, A12, A21, A22 type (pp. 23, 24)], the A output is turned ON if the measured value exceeds the A High/Low limits independent action upper side span or drops below the lower side span.

A1 or A2 output is turned ON depending on the selection in [A1/A2 output allocation (p.35)] and in [Output ON time/OFF time when A1/A2 output is ON (pp. 35, 36)].

If Output ON time and OFF time are set, A1 or A2 output can be turned ON/OFF in a configured cycle when A1 or A2 output is ON. (Fig. 10.2-1)

Timing chart (Output ON time and OFF time when A1 output is ON)

A output status can be read by reading Status flag 1 (A11, A12, A21, A22 output flag bit) in Serial communication.

 $A\square$ output status, when input errors occur, differs depending on the selection in [A \square output when input errors occur (p.29)].

- If $\square \vdash \vdash \vdash$ (Disabled) is selected, A \square output and A \square output status will be turned OFF when input errors occur.
- If prime (Enabled) is selected, A output and A output status will be maintained when input errors occur.

10.3 Conductivity Input Error Alarm

Conductivity input error alarm is used for detecting actuator trouble.

Even if conductivity input error alarm time (pp. 37, 38) has elapsed, and if conductivity input does not become higher than conductivity input error alarm band (pp. 37, 38), the unit assumes that actuator trouble has occurred, and writes Status flag 2.

In Serial communication, status can be read by reading Status flag 2 (A1, A2 conductivity input error alarm output flag bit).

Conductivity input error alarm is disabled during Conductivity Zero or Span adjustment.

Conductivity input error alarm is enabled only when $\mathcal{E}_{\mathcal{L}}\mathcal{L}$ (Conductivity input low limit action) or $\mathcal{E}_{\mathcal{L}}\mathcal{H}$ (Conductivity input high limit action) is selected in [A11, A12, A21, A22 type (pp.23, 24)].

10.4 Error Output

If $\mathcal{E} \cap \mathcal{A}^{\mathcal{F}}$ (Error output) is selected in [A11, A12, A21, A22 type (pp. 23, 24)], the A1 or A2 output will be turned ON when error type is "Error". See (Table 10.6-1).

10.5 Fail Output

If FRL = (Fail output) is selected in [A11, A12, A21, A22 type (pp. 23, 24)], the A1 or A2 output will be turned ON when error type is "Fail". See (Table 10.6-1).

10.6 Error Code during Measurement

For Temperature sensor error or outside temperature compensation range during measurement, their corresponding error codes flash on the Temperature Display as shown below in (Table 10.6-1).

(10000000								
Error Code	Error Type	Error Contents	Description	Occurrence				
E-01	Fail	Temperature sensor burnout	Temperature sensor lead wire is burnt out.					
8-82	Fail	Temperature sensor short-circuited	Temperature sensor lead wire is short-circuited.	When measuring				
8-83	Error	Outside temperature compensation range	Measured temperature has exceeded 110.0℃.	or calibrating				
E-04	Error	Outside temperature compensation range	Measured temperature is less than 0.0℃.					

(Table 10.6-1)

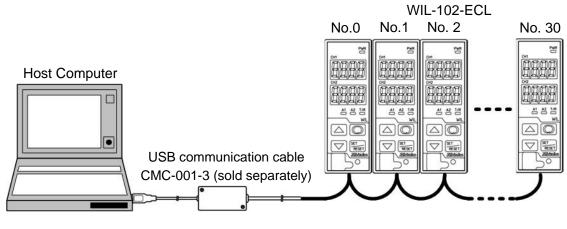
10.7 Transmission Output 1 and 2

Converting conductivity or temperature to analog signal every input sampling period, outputs in current. (Factory default: Transmission output 1: Conductivity, Transmission output 2: Temperature)

If $\Box F F \square$ (No temperature compensation) is selected in [Temperature compensation method (p.30)], and if $F E \overline{\Box} F$ (Temperature transmission) is selected in [Transmission output 1 or 2 type (p.32)], Transmission output 1 or 2 value differs depending on the selection in [Temperature Display when no temperature compensation (p.34)].

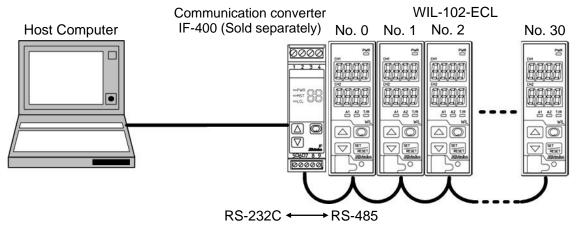
- If ロケケロ (Unlit) or 'っ, ' ゴロ (Reference temperature) is selected, the value set in [Reference temperature (p.30)] will be output.
- If PB (Measured value) is selected, the measured value will be output.

If Transmission output 1 high limit and low limit are set to the same value, Transmission output 1 will be fixed at 4 mA DC.


If Transmission output 2 high limit and low limit are set to the same value, Transmission output 2 will be fixed at 4 mA DC.

Resolution	12000		
Current	4 to 20 mA DC (Load resistance: Max 550 Ω)		
Output accuracy	Within $\pm 0.3\%$ of Transmission output 1 or 2 span		

11. Communication


11.1 System Configuration Example

When Using USB Communication Cable CMC-001-3 (sold separately)

(Fig. 11.1-1)

When Using Communication Converter IF-400 (sold separately)

(Fig. 11.1-2)

11.2 Setting Method of the Conductivity Meter

Communication parameters can be set in the Basic Function Group.

To enter the Basic Function Group, follow the procedure below.

- 1 a.f.E.r Press the 🔘 key 3 times in Conductivity/Temperature Display Mode.
- $2 = \overline{n} + \frac{1}{2}$ Press the **Example** key twice. "Communication protocol" will appear.
- $^{(3)}$ Set each item. (Use the \bigtriangleup or \bigtriangledown key for settings, and register the selection/value with the \blacksquare

key.)		
Character	Setting Item, Function, Setting Range	Factory Default
cā51	Communication protocol	Shinko protocol
noñL	Selects communication protocol.	
	Selection item:	
	معمد : Shinko protocol	
	ក់ធ៨គឺ:MODBUS ASCII mode	
	ດັດdr : MODBUS RTU mode	
cñna	Instrument number	0
	Sets the instrument number.	
	The instrument numbers should be set one by one when m	•
	connected in Serial communication, otherwise communicat	ion is impossible.
	Setting range: 0 to 95	
<u>cā5</u> P	Communication speed	9600 bps
	Selects a communication speed equal to that of the host co	omputer.
	Selection item:	
	9600 bps	
	192 : 19200 bps	
	<i>∃BЧ</i> : 38400 bps	
c AFF	Data bit/Parity	7 bits/Even
7887	Selects data bit and parity.	
	• Selection item:	
	Bron : 8 bits/No parity	
	ਹਿਕਰ : 7 bits/No parity 8E ਸ਼ੁਰੂ : 8 bits/Even	
	TEBO : 7 bits/Even	
	िंद्वते : 7 bits/Even	
	ladd : 7 bits/Odd	
รกับก	Stop bit	1 bit
	• Selects the stop bit.	
	Selection item:	
	\vec{z} : 2 bits	

Press the set key multiple times.
 The unit reverts to Conductivity/Temperature Display Mode.

11.3 Communication Procedure

Communication starts with command transmission from the host computer (hereafter Master) and ends with the response of the WIL-102-ECL (hereafter Slave).

Response with Data

When the master sends the reading command, the slave responds with the corresponding set value or current status.

Acknowledgement

When the master sends the setting command, the slave responds by sending acknowledgement after the processing is terminated.

Negative Acknowledgement

When the master sends a non-existent command or value out of the setting range, the slave returns a negative acknowledgement.

No Response

The slave will not respond to the master in the following cases:

- Global address (Shinko protocol) is set.
- Broadcast address (MODBUS protocol) is set.
- · Communication error (framing error, parity error)
- Checksum error (Shinko protocol), LRC discrepancy (MODBUS ASCII mode), CRC-16 discrepancy (MODBUS RTU mode)

Communication Timing of the RS-485

Master Side (Take note while programming)

When the master starts transmission through the RS-485 communication line, the master is arranged so as to provide an idle status (mark status) transmission period of 1 or more characters before sending the command to ensure synchronization on the receiving side.

Set the program so that the master can disconnect the transmitter from the communication line within a 1-character transmission period after sending the command in preparation for reception of the response from the slave.

To avoid collision of transmissions between the master and the slave, send the next command after carefully checking that the master has received the response.

If a response to the command is not returned due to communication errors, set the Retry Processing to send the command again. (It is recommended to execute Retry twice or more.)

Slave Side

When the slave starts transmission through the RS-485 communication line, the slave is arranged so as to provide an idle status (mark status) transmission period of 1 or more characters before sending the response to ensure synchronization on the receiving side.

The slave is arranged so as to disconnect the transmitter from the communication line within a 1-character transmission period after sending the response.

11.4 Shinko Protocol

11.4.1 Transmission Mode

Shinko protocol is composed of ASCII. Hexadecimal (0 to 9, A to F), which is divided into high order (4-bit) and low order (4-bit) out of 8-bit binary data in command is transmitted as ASCII characters. Data format Start bit: 1 bit

Start bit: 1 bit Data bit: 7 bits Parity: Even Stop bit: 1 bit

Error detection: Checksum

11.4.2 Command Configuration

All commands are composed of ASCII.

The data (set value, decimal number) is represented by hexadecimal numbers.

The negative numbers are represented in 2's complement.

Numerals written below the command represent number of characters.

(1) Setting Command

,	<u> </u>							
	Header (02H)	Address	Sub address (20H)	Command type (50H)	Data item	Data	Checksum	Delimiter (03H)
	1	1	1	1	4	4	2	1
		(Fig	g. 11.4.2-1)					

(2) Reading Command

Header (02H)	Address	Sub address (20H)	Command type (20H)	Data item	Checksum	Delimiter (03H)
1	1	1	1	4	2	1
	/ _ -					

(Fig. 11.4.2-2)

(3) Response with Data

Header (06H)	Address	Sub address (20H)	Command type (20H)	Data item	Data	Checksum	Delimiter (03H)
1	1	1	1	4	4	2	1
	(Fig	g. 11.4.2-3)					

(4) Acknowledgement

1								
	Header	Address	Checksum	Delimiter				
	(06H)	Address	Onecksum	(03H)				
	1	1	2	1				
		(Fig. 11.4.2-4)						

(5) Negative Acknowledgement

Header (15H)	Address	Error code	Checksum	Delimiter (03H)		
1	1	1	2	1		
(Fig. 11.4.2-5)						

Header:

Control code to represent the beginning of the command or the response. ASCII codes are used.

Setting command, Reading command: STX (02H) fixed

Response with data, Acknowledgement: ACK (06H) fixed

Negative acknowledgement: NAK (15H) fixed

Instrument Number (Address): Numbers by which the master discerns each slave.

Instrument numbers 0 to 94 and Global address 95.

ASCII codes (20H to 7FH) are used by adding 20H to instrument numbers 0 to 95 (00H to 5FH).

95 (7FH) is called Global address, which is used when the same command is sent to all the slaves connected. However, the response is not returned.

Sub Address: 20H fixed

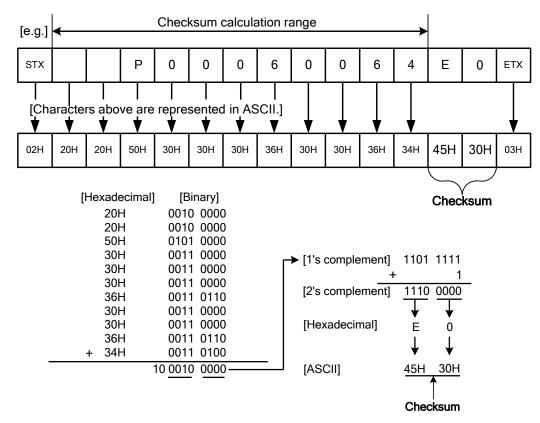
Command Type: Code to discern Setting command (50H) and Reading command (20H).

Data Item:	Classification of the command object. Composed of 4-digit hexadecimal numbers, using ASCII. (Refer to "11.6. Communication Command Table".) (pp.55 to 63)
Data:	The contents of data (set value) differ depending on the setting command. Composed of 4-digit hexadecimal numbers, using ASCII. (Refer to "11.6. Communication Command Table".) (pp.55 to 63)
Checksum:	2-character data to detect communication errors. (Refer to "11.4.3 Checksum Calculation".) (p.50)
Delimiter:	Control code to represent the end of command. ASCII code ETX (03H) fixed
Error Code:	 Represents an error type, using ASCII. 1 (31H)Non-existent command 2 (32H)Not used 3 (33H)Setting outside the setting range 4 (34H)Status unable to be set (e.g. During calibration mode) 5 (35H)During setting mode by keypad operation

11.4.3 Checksum Calculation

Checksum is used to detect receiving errors in the command or data. Set the program for the master side as well to calculate the checksum of the response data from the slaves so that communication errors can be checked.

The ASCII code (hexadecimal) corresponding to the characters which range from the address to that before the checksum is converted to binary notation, and the total value is calculated. The lower one byte of the total value is converted to 2's complement, and then to hexadecimal numbers, that is, ASCII code for the checksum.


• 1's complement: Reverse each binary bit. 0 will become 1 and vice versa.

• 2's complement: Add 1 to 1's complement.

Checksum Calculation Example

A11 value: 1.00 (0064H)

Address (instrument number): 0 (20H)

(Fig. 11.4.3-1)

11.5 MODBUS Protocol

11.5.1 Transmission Mode

There are 2 transmission modes (ASCII and RTU) in MODBUS protocol.

ASCII Mode

Hexadecimal (0 to 9, A to F), which is divided into high order (4-bit) and low order (4-bit) out of 8-bit binary data in command is transmitted as ASCII characters.

Data format Start bit: 1 bit Data bit: 7 bits (8 bits) (Selectable) Parity: Even (No parity, Odd) (Selectable) Stop bit: 1 bit (2 bits) (Selectable)

Error detection : LRC (Longitudinal Redundancy Check)

RTU Mode

8-bit binary data in command is transmitted as it is.

Data format Start bit: 1 bit

Data bit: 8 bits

Parity: No parity (Even, Odd) (Selectable) Stop bit: 1 bit (2 bits) (Selectable)

Error detection: CRC-16 (Cyclic Redundancy Check)

11.5.2 Data Communication Interval

ASCII Mode

Max.1 second of interval between ASCII mode characters

RTU Mode

Communication speed 9600 bps, 19200 bps:

To transmit continuously, an interval between characters which consist of one message, must be within 1.5-character transmission times.

Communication speed 38400 bps:

To transmit continuously, an interval between characters which consist of one message, must be within 750 μ s.

If an interval lasts longer than 1.5-character transmission times or 750 μ s, the WIL-102-ECL assumes that transmission from the master is finished, which results in a communication error, and will not return a response.

11.5.3 Message Configuration

ASCII Mode

ASCII mode message is configured to start by Header [: (colon)(3AH)] and end by Delimiter [CR (carriage return) (0DH) + LF (Line feed)(0AH)].

Header	Slave	Function	Data	Error Check	Delimiter	Delimiter
(:)	Address	Code	Dala	LRC	(CR)	(LF)

RTU Mode

Communication speed 9600 bps, 19200 bps: RTU mode is configured to start after idle time is processed for more than 3.5-character transmissions, and end after idle time is processed for more than 3.5-character transmissions.

Communication speed 38400 bps: RTU mode is configured to start after idle time is processed for more than 1.75 ms, and end after idle time is processed for more than 1.75 ms.

3.5 Idle	Slave	Function	Doto	Error Check	3.5 Idle
Characters	Address	Code	Dala	CRC-16	Characters

(1) Slave Address

Slave address is an individual instrument number on the slave side, and is set within the range 0 to 95 (00H to 5FH).

The master identifies slaves by the slave address of the requested message.

The slave informs the master which slave is responding to the master by placing its own address in the response message.

Slave address 00H (Broadcast address) can identify all the slaves connected. However, slaves do not respond.

(2) Function Code

The function code is the command code for the slave to undertake the following action types. **(Table 11.5.3-1)**

Function Code	Contents
03 (03H)	Reading the set value and information from slaves
06 (06H)	Setting to slaves

Function code is used to discern whether the response is normal (acknowledgement) or if any error (negative acknowledgement) has occurred when the slave returns the response message to the master. When acknowledgement is returned, the slave simply returns the original function code.

When negative acknowledgement is returned, the MSB of the original function code is set as 1 for the response.

(For example, when the master sends request message setting 10H to the function code by mistake, slave returns 90H by setting the MSB to 1, because the former is an illegal function.)

For negative acknowledgement, the exception codes below (Table 11.5.3-2) are set to the data of the response message, and returned to the master in order to inform it of what kind of error has occurred.

(Table 11.5.3-2)

Exception Code	Contents
1 (01H)	Illegal function (Non-existent function)
2 (02H)	Illegal data address (Non-existent data address)
3 (03H)	Illegal data value (Value out of the setting range)
17 (11H)	Shinko protocol error code 4 [Status unable to be set (e.g.) During calibration mode]
18 (12H)	Shinko protocol error code 5 (During setting mode by keypad operation)

(3) Data

Data differs depending on the function code.

A request message from the master is composed of data item, amount of data and setting data. A response message from the slave is composed of the byte count, data and exception codes in negative acknowledgements, corresponding to the request message. Effective range of data is -32768 to 32767 (8000H to 7FFFH).

(4) Error Check

ASCII Mode

After calculating LRC (Longitudinal Redundancy Check) from the slave address to the end of data, the calculated 8-bit data is converted to two ASCII characters, and are appended to the end of message.

How to Calculate LRC

- ① Create a message in RTU mode.
- 2 Add all the values from the slave address to the end of data. This is assumed as X.
- ^③ Make a complement for X (bit reverse). This is assumed as X.
- 4 Add a value of 1 to X. This is assumed as X.
- ⁽⁵⁾ Set X as an LRC to the end of the message.
- ⁶ Convert the whole message to ASCII characters.

RTU Mode

After calculating CRC-16 (Cyclic Redundancy Check) from the slave address to the end of the data, the calculated 16-bit data is appended to the end of message in sequence from low order to high order.

How to calculate CRC-16

In the CRC-16 system, the information is divided by the polynomial series. The remainder is added to the end of the information and transmitted. The generation of a polynomial series is as follows. (Generation of polynomial series: $X^{16} + X^{15} + X^2 + 1$)

- ① Initialize the CRC-16 data (assumed as X) (FFFFH).
- 2 Calculate exclusive OR (XOR) with the 1st data and X. This is assumed as X.
- ③ Shift X one bit to the right. This is assumed as X.
- ⁽⁴⁾ When a carry is generated as a result of the shift, XOR is calculated by X of ⁽³⁾ and the fixed value (A001H). This is assumed as X. If a carry is not generated, go to step ⁽⁵⁾.
- (5) Repeat steps (3) and (4) until shifting 8 times.
- $^{\textcircled{6}}$ XOR is calculated with the next data and X. This is assumed as X.
- O Repeat steps 3 to 5.
- (8) Repeat steps (3) to (5) up to the final data.
- ⁽⁹⁾ Set X as CRC-16 to the end of message in sequence from low order to high order.

11.5.4 Message Example

ASCII Mode

Numerals written below the command represent the number of characters.

① Reading [Slave address 1, Data item 0080H (Conductivity)]

• A request message from the master

Amount of data means how many data items are to be read. It is fixed as (30H 30H 30H 31H).

Header	Slave Address	Function Code	Data Item [0080H]	Amount of Data [0001H]	Error Check LRC	Delimiter
(3AH)	(30H 31H)	(30H 33H)	(30H 30H 38H 30H)	(30H 30H 30H 31H)	(37H 42H)	(0DH 0AH)
1	2	2	4	4	2	2

• Response message from the slave in normal status [1.00 μ S/cm (0064H)] The response byte count means the byte count of the data which has been read.

It is fixed as (30H 32H).

Header	Slave Address	Function Code	Response Byte Count [02H]	Data [0064H]	Error Check LRC	Delimiter
(3AH)	(30H 31H)	(30H 33H)	(30H 32H)	(30H 30H 36H 34H)	(39H 36H)	(0DH 0AH)
1	2	2	2	4	2	2

• Response message from the slave in exception (error) status (When a data item is incorrect) The function code MSB is set to 1 for the response message in exception (error) status (83H). The exception code 02H (Non-existent data address) is returned (error)

The exception code of the (Non-existent data address) is returned (enor).						
Header	Slave	Function	Exception Code	Error Check	Delimiter	
	Address	Code	[02H]	LRC		
(3AH)	(30H 31H)	(38H 33H)	(30H 32H)	(37H 41H)	(0DH 0AH)	
1	2	2	2	2	2	

② Setting [Slave address 1, Data item 0006H (A11 value)]

• A request message from the master [When A11 value is set to 1.00 (0064H)]

					/1	
Header	Slave	Function	Data Item	Data	Error Check	Delimiter
	Address	Code	[0006H]	[0064H]	LRC	
(3AH)	(30H 31H)	(30H 36H)	(30H 30H 30H 36H)	(30H 30H 36H 34H)	(38H 44H)	(0DH 0AH)
1	2	2	4	4	2	2

· Response message from the slave in normal status

rtoopone	o meesage i					
Header	Slave	Function	Data Item	Data	Error Check	Delimiter
	Address	Code	[0006H]	[0064H]	LRC	
(3AH)	(30H 31H)	(30H 36H)	(30H 30H 30H 36H)	(30H 30H 36H 34H)	(38H 44H)	(0DH 0AH)
1	2	2	4	4	2	2

• Response message from the slave in exception (error) status (When a value out of the setting range is set)

The function code MSB is set to 1 for the response message in exception (error) status (86H). The exception code 03H (Value out of the setting range) is returned (error)

The excep	The exception code 03H (value out of the setting range) is returned (error).							
Header	ader Slave I		Exception Code	Error Check	Delimiter			
	Address	Code	[03H]	LRC				
(3AH)	(30H 31H)	(38H 36H)	(30H 33H)	(37H 36H)	(0DH 0AH)			
1	2	2	2	2	2			

RTU Mode

Numerals written below the command represent the number of characters.

① Reading [Slave address 1, Data item 0080H (Conductivity)]

• A request message from the master

Amount of data means how many data items are to be read. It is fixed as (0001H).

3.5 Idle Characters	Slave Address (01H)	Function Code (03H)	Data Item (0080H)	Amount of Data (0001H)	Error Check CRC-16 (85E2H)	3.5 Idle Characters
	1	1	2	2	2	

• Response message from the slave in normal status [1.00 $\,\mu$ S/cm (0064H)]

The response byte count means the byte count of the data which has been read. It is fixed as (02H).

3.5 Idle Characters	Slave Address (01H)	Function Code (03H)	Response Byte Count (02H)	Data (0064H)	Error Check CRC-16 (B9AFH)	3.5 Idle Characters
	1	1	1	2	2	

• Response message from the slave in exception (error) status (When data item is incorrect). The function code MSB is set to 1 for the response message in exception (error) status (83H).

The exception code (02H: Non-existent data address) is returned (error).

3.5 Idle Characters	Slave Address (01H)	Function Code (83H)	Exception Code (02H)	Error Check CRC-16 (C0F1H)	3.5 Idle Characters	
L	1	1	1	2	L	

⁽²⁾ Setting [Slave address 1, Data item 0006H (A11 value)]

• A request message from the master [When A11 value is set to 1.00 (0064H)]

3.5 Idle Characters	Slave Address (01H)	Function Code (06H)	Data Item (0006H)	Data (0064H)	Error Check CRC-16 (6820H)	3.5 Idle Characters	
	1	1	2	2	2		

• Response message from the slave in normal status

3.5 Idle Characters	Slave Address (01H)	Function Code (06H)	Data Item (0006H)	Data (0064H)	Error Check CRC-16 (6820H)	3.5 Idle Characters
	1	1	2	2	2	

• Response message from the slave in exception (error) status (When a value out of the setting range is set)

The function code MSB is set to 1 for the response message in exception (error) status (86H). The exception code (03H: Value out of the setting range) is returned (error).

3.5 Idle Characters	Slave Address (01H)	Function Code (86H)	Exception Code (03H)	Error Check CRC-16 (0261H)	3.5 Idle Characters	
	1	1	1	2		

11.6 Communication Command Table

11.6.1 Notes about Setting/Reading Command

- The data (set value, decimal) is converted to hexadecimal numbers. A negative number is represented in 2's complement.
- When connecting multiple slaves, the address (instrument number) must not be duplicated.
- Data item 0200H to 0209H (User save area 1 to 10) can be read or set in 1 word units.
- Effective range of data is -32768 to 32767 (8000H to 7FFFH).
- MODBUS protocol uses Holding Register addresses. The Holding Register addresses are created as follows. A Shinko command data item is converted to decimal number, and the offset of 40001 is added. The result is the Holding Register address.

Using Data item 0005H (A11 type) as an example:

- Data item in the sending message is 0005H, however, MODBUS protocol Holding Register address is 40006 (5 + 40001).
- Even if options are not ordered, setting or reading via software communication will be possible. Command contents of the A11, A12, A21, A22 will function, however, Transmission output 1 and 2 command contents will not function.

(1) Setting Command

- Up to 1,000,000 (one million) entries can be stored in non-volatile IC memory. If the number of settings exceeds the limit, the data will not be saved. So, ensure the set values are not frequently changed via software communication. (If a value set via software communication is the same as the value before the setting, the value will not be written in non-volatile IC memory.)
- Be sure to select Lock 3 when changing the set value frequently via software communication. If Lock 3 is selected, all set values – except Sensor cell constant, Measurement unit, Measurement range, Conductivity Zero and Span adjustment values, Temperature calibration value, Transmission output 1 Zero and Span adjustment values, Transmission output 2 Zero and Span adjustment values – can be temporarily changed. However, they revert to their previous value after the power is turned off because they are not saved in the non-volatile IC memory. Do not change setting items (A11, A12, A21 and A22 types). If they are changed, they will affect other setting items.
- Setting range of each item is the same as that of keypad operation.
- When the data (set value) has a decimal point, a whole number (hexadecimal) without a decimal point is used.
- If A11, A12, A21 or A22 type is changed at Data item 0005H (A11 type), 0050H (A12 type), 0051H (A21 type) or 052H (A22 type), the A11, A12, A21 or A22 value will default to 0.00 or 0.0. The output status of A11, A12, A21 or A22 will also be initialized.
- Settings via software communication are possible while in Set value lock status.
- Communication parameters such as Instrument Number, Communication Speed of the slave cannot be set by software communication. They can only be set via the keypad. (p.47)
- When sending a command by Global address [95 (7FH), Shinko protocol] or Broadcast address [00H, MODBUS protocol], the same command is sent to all the slaves connected. However, the response is not returned.

(2) Reading Command

• When the data (set value) has a decimal point, a whole number (hexadecimal) without a decimal point is used for a response.

MODBUS Shinko Command Function **Data Item** Data Туре Code 50H/20H 06H/03H 0001H Sensor cell constant 0000H: 0.01/cm 0001H: 0.1/cm 0002H: 1.0/cm 50H/20H 06H/03H 0002H Cell constant correction Set value value 50H/20H 06H/03H 0003H Measurement unit 0000H: Conductivity (μ S/cm) 0001H: Conductivity (mS/m) 0002H: TDS conversion (mg/L) When Conductivity (μ S/cm) is 50H/20H 06H/03H 0004H Measurement range selected in [Measurement unit]: Cell constant 0.01/cm 0000H: 0.000 to 2.000 μ S/cm 0001H: 0.00 to 20.00 μ S/cm 0002H: 0.0 to 50.0 μ S/cm Cell constant 0.1/cm 0000H: 0.00 to 20.00 μ S/cm 0001H: 0.00 to 50.00 μ S/cm 0002H: 0.0 to 500.0 μ S/cm Cell constant 1.0/cm 0000H: 0.0 to 200.0 μ S/cm When Conductivity (mS/m) is selected in [Measurement unit]: Cell constant 0.01/cm 0000H: 0.000 to 0.200 mS/m 0001H: 0.000 to 2.000 mS/m 0002H: 0.000 to 5.000 mS/m Cell constant 0.1/cm 0000H: 0.000 to 2.000 mS/m 0001H: 0.000 to 5.000 mS/m 0002H: 0.00 to 50.00 mS/m Cell constant 1.0/cm 0000H: 0.00 to 20.00 mS/m When TDS conversion (mg/L) is selected in [Measurement unit]: Cell constant 0.01/cm 0000H: 0.00 to 2.00 mg/L 0001H: 0.0 to 20.0 mg/L 0002H: 0.0 to 50.0 mg/L Cell constant 0.1/cm 0000H: 0.0 to 20.0 mg/L 0001H: 0 to 200 mg/L 0002H: 0 to 500 mg/L Cell constant 1.0/cm 0000H: 0 to 200 mg/L 0000H: No action 50H/20H 06H/03H 0005H A11 type 0001H: Conductivity input low limit action 0002H: Conductivity input high limit action 0003H: Temperature input low limit action 0004H: Temperature input high limit action 0005H: Error output 0006H: Fail output 0007H: Conductivity input High/Low limits independent action 0008H: Temperature input High/Low limits independent action 50H/20H 06H/03H 0006H Set value A11 value 50H/20H 06H/03H 0007H A11 ON side Set value A11 ON delay time 50H/20H 06H/03H 0008H Set value 50H/20H 06H/03H 0009H A11 OFF delay time Set value

11.6.2 Setting/Reading Command

Shinko Command	MODBUS Function Code		Data Item	Data			
Type 50H/20H	06H/03H	000AH	Conductivity input	Set value			
001 #2011	001/0011	000/ 11	filter time constant				
50H/20H	06H/03H	000BH	TDS conversion factor	Set value			
50H/20H	06H/03H	0020H	Temperature compensation method	0000H: Temperature characteristics of NaCl 0001H: Temperature coefficient (%/°C) and a randomly selected reference temperature. 0002H: Temperature characteristics of deionized water 0003H: No temperature compensation			
50H/20H	06H/03H	0021H	Temperature coefficient	Set value			
50H/20H	06H/03H	0022H	Reference temperature	Set value			
50H/20H	06H/03H	0023H	Temperature input decimal point place	0000H: No decimal point 0001H: 1 digit after decimal point			
50H/20H	06H/03H	0029H	Temperature input filter time constant	Set value			
50H/20H	06H/03H	0030H	Set value lock	0000H: Unlock 0001H: Lock 1 0002H: Lock 2 0003H: Lock 3			
50H/20H	06H/03H	0031H	Transmission output 1 type	0000H: Conductivity transmission 0001H: Temperature transmission			
50H/20H	06H/03H	0032H	Transmission output 1 high limit	Set value			
50H/20H	06H/03H	0033H	Transmission output 1 low limit	Set value			
50H/20H	06H/03H	0034H	Auto-light function	0000H: Disabled 0001H: Enabled			
50H/20H	06H/03H	0035H	Display selection	DataConductivity DisplayTemperature Display0000HConductivityTemperature0001HConductivityNo indication0002HNo indicationTemperature0003HNo indicationNo indication			
50H/20H	06H/03H	0036H	Indication time	Set value			
50H	06H	0040H	Temperature calibration mode	0000H: Conductivity/Temperature Display Mode 0001H: Temperature calibration mode			
50H/20H	06H/03H	0041H	Temperature calibration value	Set value			
50H	06H	0042H	Conductivity calibration mode	0000H: Conductivity/Temperature Display Mode 0001H: Conductivity calibration Zero adjustment mode 0002H: Conductivity calibration Span adjustment mode			
50H/20H	06H/03H	0043H	Conductivity Zero adjustment value	Set value			
50H/20H	06H/03H	0044H	Conductivity Span adjustment value	Set value			
50H/20H	06H/03H	0045H	ADD output when input errors occur	0000H: Enabled 0001H: Disabled			
50H/20H	06H/03H	0046H	Cable length correction	Set value			
50H/20H	06H/03H	0047H	Cable cross-section area	Set value			
50H/20H	06H/03H	0048H	Output ON time when A1 output is ON	Set value			
50H/20H	06H/03H	0049H	Output OFF time when A1 output is ON	Set value			

Shinko Command Type	MODBUS Function Code		Data Item		Data
50H/20H	06H/03H	004AH	Output ON time when A2 output is ON		Set value
50H/20H	06H/03H	004BH	Output OFF time when A2 output is ON		Set value
50H/20H	06H/03H	0050H	A12 type	00 00 00 00 00 00 00	 00H: No action 01H: Conductivity input low limit action 02H: Conductivity input high limit action 03H: Temperature input low limit action 04H: Temperature input high limit action 05H: Error output 06H: Fail output 07H: Conductivity input High/Low limits independent action 08H: Temperature input High/Low limits independent action
50H/20H	06H/03H	0051H	A21 type 0000H: 0001H: 0002H: 0003H: 0004H: 0005H: 0006H: 0007H: 0008H:		 00H: No action 01H: Conductivity input low limit action 02H: Conductivity input high limit action 03H: Temperature input low limit action 04H: Temperature input high limit action 05H: Error output 06H: Fail output 07H: Conductivity input High/Low limits independent action 08H: Temperature input High/Low limits independent action
50H/20H	06H/03H	0052H	00 00 00 00 00 00 00 00 00		 00H: No action 01H: Conductivity input low limit action 02H: Conductivity input high limit action 03H: Temperature input low limit action 04H: Temperature input high limit action 05H: Error output 06H: Fail output 07H: Conductivity input High/Low limits independent action 08H: Temperature input High/Low limits independent action
50H/20H	06H/03H	0053H	A12 value		Set value
50H/20H	06H/03H	0054H	A21 value		Set value
50H/20H	06H/03H	0055H	A22 value		Set value
50H/20H	06H/03H	0056H	A12 ON side		Set value
50H/20H	06H/03H	0057H	A21 ON side		Set value
50H/20H	06H/03H	0058H	A22 ON side		Set value
50H/20H	06H/03H	0059H	A12 ON delay time		Set value
50H/20H	06H/03H	005AH	A21 ON delay time		Set value
50H/20H	06H/03H	005BH	A22 ON delay time		Set value
50H/20H	06H/03H	005CH	A12 OFF delay time		Set value
50H/20H	06H/03H	005DH	A21 OFF delay time		Set value
50H/20H	06H/03H	005EH	A22 OFF delay time		Set value
50H/20H	06H/03H	0068H	Conductivity input		Set value
50H/20H	06H/03H	0069H	sensor correction Temperature Display when no temperature compensation		0000H: Unlit 0001H: Reference temperature 0002H: Measured value

Shinko Command Type	MODBUS Function Code	Data Item		Data
50H/20H	06H/03H	006AH	A1 output allocation	0000H: A11 type 0001H: A12 type 0002H: A21 type 0003H: A22 type 0004H: A11, A12 types 0005H: A21, A22 types 0006H: A11, A21 types 0007H: A12, A22 types 0008H: A11, A12, A21, A22 types
50H/20H	06H/03H	006BH	A2 output allocation	0000H: A11 type 0001H: A12 type 0002H: A21 type 0003H: A22 type 0004H: A11, A12 types 0005H: A21, A22 types 0006H: A11, A21 types 0007H: A12, A22 types 0008H: A11, A12, A21, A22 types
50H/20H	06H/03H	006FH	Pt100 input wire type	0000H: 2-wire type 0001H: 3-wire type
50H	06H	007FH	Key operation change flag clearing	0001H: Clear change flag
50H/20H	06H/03H	0100H	A11 hysteresis type	0000H: Medium Value 0001H: Reference Value
50H/20H	06H/03H	0101H	A12 hysteresis type	0000H: Medium Value 0001H: Reference Value
50H/20H	06H/03H	0102H	A21 hysteresis type	0000H: Medium Value 0001H: Reference Value
50H/20H	06H/03H	0103H	A22 hysteresis type	0000H: Medium Value 0001H: Reference Value
50H/20H	06H/03H	0104H	A11 OFF side	Set value
50H/20H	06H/03H	0105H	A12 OFF side	Set value
50H/20H	06H/03H	0106H	A21 OFF side	Set value
50H/20H	06H/03H	0107H	A22 OFF side	Set value
50H/20H	06H/03H	010FH	Transmission output 1 status when calibrating	0000H: Last value HOLD 0001H: Set value HOLD 0002H: Measured value
50H/20H	06H/03H	0110H	Transmission output 1 value HOLD when calibrating	Set value
50H/20H	06H/03H	0111H	A1 conductivity input error alarm A U type	0000H: No action 0001H: A11 type 0002H: A12 type 0003H: A21 type 0004H: A22 type
50H/20H	06H/03H	0112H	A2 conductivity input error alarm A . type	0000H: No action 0001H: A11 type 0002H: A12 type 0003H: A21 type 0004H: A22 type
50H/20H	06H/03H	0115H	A1 conductivity input error alarm band when A U output ON	Set value
50H/20H	06H/03H	0116H	A1 conductivity input error alarm time when A Output ON	Set value

Shinko	MODBUS					
Command Type	Function Code		Data Item	Data		
50H/20H	06H/03H	0117H	A1 conductivity input	Set value		
			error alarm band when			
50H/20H	06H/03H	044011	A output OFF	Set value		
50H/20H	000/030	0118H	error alarm time when	Set value		
			A output OFF			
50H/20H	06H/03H	0119H	A2 conductivity input	Set value		
			error alarm band when			
			A output ON			
50H/20H	06H/03H	011AH	A2 conductivity input error alarm time when	Set value		
			$A \square $ output ON			
50H/20H	06H/03H	011BH	A2 conductivity input	Set value		
		UTIBII	error alarm band when			
			A output OFF			
50H/20H	06H/03H	011CH	A2 conductivity input	Set value		
			error alarm time when			
50H/20H	06H/03H	040511	A output OFF	0000H: Second(a)		
501/2011	001/0311	0125H	alarm time unit	0000H: Second(s) 0001H: Minute(s)		
50H	06H	0126H	Transmission output 1			
0011	0011	012011	adjustment mode	0000H: Conductivity/Temperature Display Mode		
				0001H: Transmission output 1 Zero		
				adjustment mode		
				0002H: Transmission output 1 Span		
				adjustment mode		
50H/20H	06H/03H	0127H	Transmission output 1	Set value		
50H/20H	06H/03H	0128H	Zero adjustment value Transmission output 1	Set value		
501/2011	001/0011	01200	Span adjustment value			
50H/20H	06H/03H	0131H	3-electrode Conductivity	Set value		
			Sensor resistance			
50H/20H	06H/03H	0139H	A11 High/Low limits	Set value		
50H/20H	06H/03H	013AH	independent lower side span A12 High/Low limits	Set value		
001//2011	001//0011	UISAII	independent lower side span			
50H/20H	06H/03H	013BH	A21 High/Low limits	Set value		
			independent lower side span			
50H/20H	06H/03H	013CH	A22 High/Low limits	Set value		
50H/20H	06H/03H	012011	independent lower side span A11 High/Low limits	Set value		
50H/20H	000/030	013DH	independent upper side span	Set value		
50H/20H	06H/03H	013EH	A12 High/Low limits	Set value		
		0.02.1	independent upper side span			
50H/20H	06H/03H	013FH	A21 High/Low limits	Set value		
5011/0011	0.011/0.011		independent upper side span			
50H/20H	06H/03H	0140H	A22上High/Low limits	Set value		
50H/20H	06H/03H	0141H	independent upper side span A11 hysteresis	Set value		
50H/20H	06H/03H	0141H	A12 hysteresis	Set value		
50H/20H	06H/03H	0142H	A12 hysteresis	Set value		
50H/20H	06H/03H	0144H	A22 hysteresis	Set value		
50H/20H	06H/03H	0147H	Transmission output 2	0000H: Conductivity transmission		
			type	0001H: Temperature transmission		
50H/20H	06H/03H	0148H	Transmission output 2	Set value		
	0011/0511		high limit			
50H/20H	06H/03H	0149H	Transmission output 2	Set value		
			low limit			

Shinko Command Type	MODBUS Function Code	Data Item		Data
50H	06H	014AH	Transmission output 2 adjustment mode (*)	0000H: Conductivity/Temperature display mode 0001H: Transmission output 2 Zero adjustment mode 0002H: Transmission output 2 Span adjustment mode
50H / 20H	06H/03H	014BH	Transmission output 2 Zero adjustment value	Set value
50H / 20H	06H/03H	014CH	Transmission output 2 Span adjustment value	Set value
50H / 20H	06H/03H	014DH	Transmission output 2 status when calibrating	0000H: Last value HOLD 0001H: Set value HOLD 0002H: Measured value
50H / 20H	06H/03H	014EH	Transmission output 2 value HOLD when calibrating	Set value
50H / 20H	06H/03H	0151H	Conductivity inputs for moving average	Set value
50H / 20H	06H/03H	0152H	Temperature inputs for moving average	Set value
50H / 20H	06H/03H	0200H	User save area 1	-32768 to 32767 (8000H to 7FFFH)
50H / 20H	06H/03H	0201H	User save area 2	-32768 to 32767 (8000H to 7FFH)
50H / 20H	06H/03H	0202H	User save area 3	-32768 to 32767 (8000H to 7FFH)
50H / 20H	06H/03H	0203H	User save area 4	-32768 to 32767 (8000H to 7FFH)
50H / 20H	06H/03H	0204H	User save area 5	-32768 to 32767 (8000H to 7FFFH)
50H / 20H	06H/03H	0205H	User save area 6	-32768 to 32767 (8000H to 7FFFH)
50H / 20H	06H/03H	0206H	User save area 7	-32768 to 32767 (8000H to 7FFFH)
50H / 20H	06H/03H	0207H	User save area 8	-32768 to 32767 (8000H to 7FFFH)
50H / 20H	06H/03H	0208H	User save area 9	-32768 to 32767 (8000H to 7FFFH)
50H / 20H	06H/03H	0209H	User save area 10	-32768 to 32767 (8000H to 7FFFH)

(*) If 'Setting' is executed while Transmission output 2 (TA2 option) is not ordered, the following error code will be returned.
Shinko protocol: Error code 4 (34H)
Modbus: Exception code 17 (11H)

Shinko	MODBUS								
Command	Function		Data It	em				Data	
Туре	Code		Data h					Dutu	
20H	03H	0080H	Conductivit	v		Condu	ctivity		
20H	03H	0081H	Status flag 1						
_			0000 000		0000 00				
			2 ¹⁵	to	2 ⁰				
			_		ure sensor	burnout	0: Norn	nal 1: Burnout	
			-	-				ormal 1: Short-circuited	
			-	•				ge: Exceeding 110.0℃	
					•	•		eding 110.0°C	
			2 ³ diait: Ou	tside te				nge: Less than 0.0℃	
					•	•		than 0.0°C	
			2 ⁴ diait: Ou	tside n				ctivity measured	
			-			-		,	
			value and TDS conversion (high limit) 0: Normal 1: Outside high limit						
			2 ⁵ digit: Outside measurement range of conductivity measured						
			value and TDS conversion (low limit)						
			0: Normal 1: Outside low limit					ide low limit	
			2 ⁶ digit: A1	1 outpi	ut flag 0:	OFF	1: ON		
			2 ⁷ digit: A1	2 outpi	ut flag 0:	OFF	1: ON		
			2 ⁸ digit: A2	1 outpi	ut flag 0:	OFF	1: ON		
			29 digit: A2	2 outpi	ut flag 0:	OFF	1: ON		
			2 ¹⁰ digit: No	ot usec	I (Always 0)				
			2 ¹¹ digit: Ui	nit stati	us flag 0:	Conduc	tivity/Tem	perature Display Mode	
					1:	Setting	mode		
			2 ¹² , 2 ¹³ digi	ts: Cor	nductivity ca	alibration	n status fla	ag	
			2 ¹³	2 ¹²			Status		
			0	0	Conductiv	ity/Temp	perature D	Display Mode	
			0	1	During Co	nductivi	ty calibrat	tion Zero	
					adjustmer	t mode			
			1	0	During Co	nductivi	ty calibrat	tion Span	
					adjustmer	nt mode			
			2 ¹⁴ digit: A	loutpu	ıt		0: OFF	1: ON	
			2 ¹⁵ digit: Cl	•		ation	0: No	1: Yes	
20H	03H	0090H	Temperatu		- 1	Tempe	erature		

11.6.3 Read Only Command

Shinko Command Type	MODBUS Function Code		D	ata Ite	m		Data
20H	03H	0091H		s flag 2			
			0000 2 ¹⁵	0000		$0000 2^{0}$	
			2 ¹⁰ 2 ⁰ dic	uit.	to Not u	ی۔ ised (Alw	avs ()
			2^1 dig	,	A2 oi	•	0: OFF 1: ON
						ised (Alw	ays 0)
			2 ⁴ , 2 ⁵	-		smission	output 1 adjustment status flag
				2 ⁵	2 ⁴		Status
				0	0		tivity/Temperature Display Mode
				0	1	0	Transmission output 1 Zero adjustment
				4	•		mission output 1 adjustment mode
				1	0	U	Transmission output 1 Span adjustment
			in Transmission output 1 adjustment mode				· · · ·
			2 ⁶ digit: A1 conductivity input error alarm output flag 0: OFF 1: ON				
			2 ⁷ digit: A2 conductivity input error alarm output flag 0: OFF 1: ON				y input error alarm output flag 0: OFF 1: ON
			2 ⁸ , 2 ⁹	digits:	Trans	smission	output 2 adjustment status flag
				2 ⁹	2 ⁸		Status
				0	0	Conduc	tivity/Temperature Display Mode
				0	1	0	Transmission output 2 Zero adjustment
							mission output 2 adjustment mode
				1	0	U	Transmission output 2 Span adjustment
			10				mission output 2 adjustment mode
			-	•		ised (Alw	, , , , , , , , , , , , , , , , , , ,
			Z' ² , 2	¹³ digits 2 ¹³	s: Temp 2 ¹²	berature (calibration status flag Status
				0	0	Conduc	tivity/Temperature Display Mode
				0	1		emperature calibration
			214 2	_		ised (Alw	•
			Z ^{.,} , Z	¹³ uigits	5. INOL U	iseu (AIW	ays uj

11.7 Conductivity & Temperature Calibrations, Transmission Output 1 & 2 Adjustments

via Communication Command

11.7.1 Conductivity Calibration

Cell constant may vary due to deterioration of the 2-electrode Conductivity Sensor. To correct the varied cell constant, calibration must be performed.

Calibrate Conductivity Zero adjustment first, followed by Conductivity Span adjustment.

The following outlines the procedure for conductivity calibration.

(1) Conductivity Zero adjustment

- ^① When selecting Last value HOLD (0000H) at Data item 010FH (Transmission output 1 status when calibrating) or 014DH (Transmission output 2 status when calibrating), select it while the 2-elctrode Conductivity Sensor is being immersed in the solution currently measured.
- 2 At this stage, do not immerse the 2-elctrode Conductivity Sensor in the standard solution.
- ⁽³⁾ Set Data item 0042H (Conductivity calibration mode) to 0001H. The unit moves to Conductivity calibration Zero adjustment mode. If 2¹³, 2¹² digits are read at Data item 0081H (Status flag 1), 01 (During Conductivity calibration Zero adjustment mode) will be returned.
- Set the Conductivity Zero adjustment value at Data item 0043H (Conductivity Zero adjustment value) so that conductivity becomes 0 (zero).
 When conductivity is 0 (zero), it is not necessary to adjust.
- Set Data item 0042H (Conductivity calibration mode) to 0000H.
 Conductivity Zero adjustment is complete, and the unit will revert to Conductivity/Temperature Display Mode.

(2) Conductivity Span adjustment

- ① Immerse the 2-elctrode Conductivity Sensor in the standard solution.
- 2 Set Data item 0042H (Conductivity calibration mode) to 0002H. The unit moves to Conductivity calibration Span adjustment mode. If 2¹³, 2¹² digits are read at Data item 0081H (Status flag 1), 10 (During Conductivity calibration Span adjustment mode) will be returned.
- ^③ Set the Conductivity Span adjustment value at Data item 0044H (Conductivity Span adjustment value), while checking the conductivity.
- ④ Set Data item 0042H (Conductivity calibration mode) to 0000H. Conductivity Span adjustment is complete, and the unit will revert to Conductivity/Temperature Display Mode.

If Conductivity calibration cannot be performed while calibrating conductivity due to temperature compensation error, Conductivity measurement value error, etc., Error code 1 (Burnout, Short-circuited, etc.) will be returned after 2⁰ to 2⁵ digits are read at Data item 0081H (Status flag 1). To cancel the error code, set Data item 0042H (Conductivity calibration mode) to 0000H. The unit will revert to Conductivity/Temperature Display Mode.

If Conductivity Zero/Span adjustment value is set at Data item 0043H (Conductivity Zero adjustment value) or 0044H (Conductivity Span adjustment value) in Conductivity/Temperature Display Mode, the following error code will be returned.

- Shinko protocol: Error code 34H
- MODBUS protocol: Exception code 11H

11.7.2 Temperature Calibration

Temperature calibration is performed by setting temperature calibration value.

The following outlines the procedure for Temperature calibration.

① Set Data item 0040H (Temperature calibration mode) to 0001H. The unit moves to Temperature calibration mode.

If 2¹³, 2¹² digits are read at Data item 0091H (Status Flag 2), 01 (During temperature calibration) will be returned.

- ⁽²⁾ Set the Temperature calibration value at Data item 0041H (Temperature calibration value), while checking the temperature.
- ^③ Set Data item 0040H (Temperature calibration mode) to 0000H. Temperature calibration is complete, and the unit will revert to Conductivity/Temperature Display Mode.

If Temperature calibration cannot be performed while calibrating temperature due to input error, calibration value error, etc., Error code 1 (Burnout, Short-circuited, etc.) will be returned after 2^0 to 2^5 digits are read at Data item 0081H.

To cancel the error code, set Data item 0040H (Temperature calibration mode) to 0000H. The unit will revert to Conductivity/Temperature Display Mode.

If Temperature calibration value is set at Data item 0041H (Temperature calibration value) in Conductivity/Temperature Display Mode, the following error code will be returned.

Shinko protocol: Error code 34H MODBUS protocol: Exception code 11H

11.7.3 Transmission Output 1 Adjustment

Fine adjustment of Transmission output 1 is performed.

This instrument is adjusted at the factory, however, differences may occur between the indication value of the connected equipment (recorders, etc.) and output value of this instrument. In this case, perform Transmission output 1 Zero and Span adjustments.

The following outlines the procedure for Transmission output 1 adjustment.

- Set Data item 0126H (Transmission output 1 adjustment mode) to 0001H. The unit moves to Transmission output 1 Zero adjustment mode. If 2⁵, 2⁴ digits are read at Data item 0091H (Status flag 2), 01 (During Transmission output 1 Zero adjustment in Transmission output 1 adjustment mode) will be returned.
- ⁽²⁾ Set the Transmission output 1 Zero adjustment value at Data item 0127H (Transmission output 1 Zero adjustment value), while viewing the value indicated on the connected equipment (recorders, etc.).

Setting range: ±5.00% of Transmission output 1 span

- (3) Set Data item 0126H (Transmission output 1 adjustment mode) to 0002H. The unit moves to Transmission output 1 Span adjustment mode. If 2⁵, 2⁴ digits are read at Data item 0091H (Status flag 2), 10 (During Transmission output 1 Span adjustment in Transmission output 1 adjustment mode) will be returned.
- ④ Set Transmission output 1 Span adjustment value at Data item 0128H (Transmission output 1 Span adjustment value), while viewing the value indicated on the connected equipment (recorders, etc.).
 - Setting range: ±5.00% of Transmission output 1 span
- $^{(5)}$ Repeat steps $^{(1)}$ to $^{(4)}$ if necessary.
- ⁽⁶⁾ To finish Transmission output 1 adjustment, set Data item 0126H (Transmission output 1 adjustment mode) to 0000H.

The unit reverts to Conductivity/Temperature Display Mode.

11.7.4 Transmission Output 2 Adjustment

Fine adjustment of Transmission output 2 is performed.

This instrument is adjusted at the factory, however, differences may occur between the indication value of the connected equipment (recorders, etc.) and output value of this instrument. In this case, perform Transmission output 2 Zero and Span adjustments.

The following outlines the procedure for Transmission output 2 adjustment.

- Set Data item 014AH (Transmission output 2 adjustment mode) to 0001H. The unit moves to Transmission output 2 Zero adjustment mode. If 2⁹, 2⁸ digits are read at Data item 0091H (Status flag 2), 01 (During Transmission output 2 Zero adjustment in Transmission output 2 adjustment mode) will be returned.
- ⁽²⁾ Set the Transmission output 2 Zero adjustment value at Data item 014BH (Transmission output 2 Zero adjustment value), while viewing the value indicated on the connected equipment (recorders, etc.).
 - Setting range: ±5.00% of Transmission output 2 span
- ⁽³⁾ Set Data item 014AH (Transmission output 2 adjustment mode) to 0002H. The unit moves to Transmission output 2 Span adjustment mode. If 2⁹, 2⁸ digits are read at Data item 0091H (Status flag 2), 10 (During Transmission output 2 Span adjustment in Transmission output 2 adjustment mode) will be returned.
- ④ Set Transmission output 2 Span adjustment value at Data item 014CH (Transmission output 2 Span adjustment value), while viewing the value indicated on the connected equipment (recorders, etc.).

Setting range: ±5.00% of Transmission output 2 span

- $^{(5)}$ Repeat steps $^{(1)}$ to $^{(4)}$ if necessary.
- ⁽⁶⁾ To finish Transmission output 2 adjustment, set Data item 014AH (Transmission output 2 adjustment mode) to 0000H.

The unit reverts to Conductivity/Temperature Display Mode.

11.8 Notes on Programming Monitoring Software

11.8.1 How to Speed up the Scan Time

When monitoring multiple units of the WIL-102-ECL, set the program so that the requisite minimum pieces of data such as Data item 0080H (Conductivity), Data item 0090H (Temperature), Data item 0081H (Status flag 1), Data item 0091H (Status flag 2) can be read.

For other data, set the program so that they can be read only when their set value has been changed. This will speed up the scan time.

11.8.2 How to Read the Set Value Changes Made by Front Keypad Operation

If any set value is changed by keypad operation, the instrument sets [0081H (Status flag 1) 2¹⁵: Change in key operation] to 1 (Yes).

There are 2 methods of reading the set value changes made by the front keypad.

(1) Reading Method 1

- ⁽¹⁾ On the monitoring software side, check that [0081H (Status flag 1) 2¹⁵: Change in key operation] has been set to 1 (Yes), then read all set values.
- ⁽²⁾ Clear [0081H (Status flag 1) 2¹⁵: Change in key operation], by setting Data item 007FH (Key operation change flag clearing) to 0001H (Clear change flag).

If 007FH (Key operation change flag clearing) is set to 0001H (Clear change flag) during the setting mode of the instrument, Error code 5 (35H, Shinko protocol) or Exception Code 18 (12H, MODBUS protocol) will be returned as a negative acknowledgement. And [0081H (Status flag 1) 2¹⁵: Change in key operation] cannot be cleared.

Set a program so that all set values can be read when a negative acknowledgement is returned.

⁽³⁾ Read all set values again after acknowledgement is returned.

(2) Reading Method 2

- ⁽¹⁾ On the monitoring software side, check that [0081H (Status flag 1) 2¹⁵: Change in key operation] has been set to 1 (Yes), then set 007FH (Key operation change flag clearing) to 0001H (Clear change flag).
- ⁽²⁾ Set the program depending on the acknowledgement or negative acknowledgement as follows.

When acknowledgement is returned:

Consider it as settings completed, and read all set values.

When Error code 5 (35H, Shinko protocol) or Exception code 18 (12H, MODBUS protocol) is returned as a negative acknowledgement:

Consider it as still in setting mode, and read the requisite minimum pieces of data such as 0080H (Conductivity), 0090H (Temperature), 0081H (Status flag 1), 0091H (Status flag 2), then return to step 1.

Thus, programs which do not affect the scan time can be created using the methods described above, even if set values on the monitoring software will not be updated until settings are complete.

11.8.3 Note when Sending All Set Values Simultaneously

• If A type is changed at Data item 0005H (A11 type), 0050H (A12 type), 0051H (A21 type) or 0052H (A22 type), the A11, A12, A21 or A22 value will default to 0.00 or 0.0. Output status of A11, A12, A21 or A22 will also be initialized.

First, send the A11, A12, A21, A22 type, then send the A11, A12, A21, A22 value set at Data item 0006H (A11 value), 0053H (A12 value), 0054H (A21 value) and 0055H (A22 value).

12. Specifications

12.1 Standard Specifications

Rating

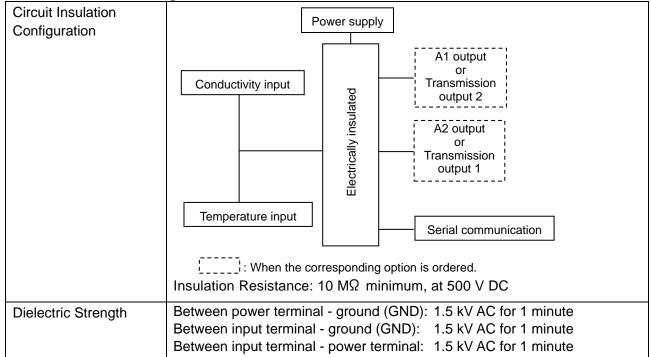
Rated Scale	Ing	out	Cell Constant	Input Rai	nge	Resolution
				0.000 to 2.000	µS/cm	0.001 µS/cm
				0.00 to 20.00 Å	ℓS/cm	0.01 µS/cm
				0.00 to 50.00 Å		0.01 µS/cm
			Cell	0.000 to 0.200	mS/m	0.001 mS/m
			constant	0.000 to 2.000	mS/m	0.001 mS/m
			0.01/cm	0.000 to 5.000	mS/m	0.001 mS/m
				0.00 to 2.00 mg	ı/L	0.01 mg/L
				0.0 to 20.0 mg/	L	0.1 mg/L
	Ę	Ę		0.0 to 50.0 mg/	L	0.1 mg/L
	tivi	tivi		0.00 to 20.00 Å	ℓS/cm	0.01 µS/cm
	Conductivity	Conductivity		0.00 to 50.00 Å	^ℓ S/cm	0.01 µS/cm
	uo.	ŭ		0.0 to 500.0 µs	S/cm	0.1 <i>µ</i> S/cm
	0	0	Cell constant 0.1/cm	0.000 to 2.000 mS/m		0.001 mS/m
				0.000 to 5.000 mS/m		0.001 mS/m
				0.00 to 50.00 mS/m		0.01 mS/m
				0.0 to 20.0 mg/L		0.1 mg/L
				0 to 200 mg/L		1 mg/L
				0 to 500 mg/L		1 mg/L
			Cell	0.0 to 200.0 µs	S/cm	0.1 <i>µ</i> S/cm
			constant	0.00 to 20.00 m	ıS/m	0.01 mS/m
			1.0/cm	0 to 200 mg/L		1 mg/L
	Temper-	Pt100		0.0 to 100.0℃		0.1℃
	ature (*)	Pt1000		0.0 to 100.0℃		0.1℃
	(*) For the	e temperat	ure indicatio	n, decimal point p	place is sel	ectable.
Input	2-electroo	de Conduc	tivity Sensor	(Temperature ele	ement: Pt1	00)
	2-electroo	de Conduc	tivity Sensor	(Temperature ele	ement: Pt1	000)
Power Supply Voltage	Model		WIL	-102-ECL	WIL-	102-ECL 1
	Power su	pply	100 to 240	V AC 50/60 Hz	24 V AC/	DC 50/60 Hz
	voltage					
		Allowable voltage		85 to 264 V AC		V AC/DC
	fluctuation range					

General Structure

External Dimensions	30 x 88 x 108 mm (W x H x D, including socket)				
Mounting	DIN rail				
Case	Material: Flame-resistant resin, Color: Light gray				
Panel	Membrane sheet				

Indication Structure	Display	Display					
	Conductivity Display	Red LED 4-digits, character size: 10 x 4.6 m (H x W)					
	Temperature Display	Red LED 4-digits, character size: 10 x 4.6 m (H x W)					
	Action Indicators						
	PWR (Yellow)	Lit when power supply is ON.					
	A1 (Red)	Lit when A1 output is ON. (Unlit when TA2 option is added.)					
	A2 (Yellow)	Lit when A2 output is ON. (Unlit when TA option or TA2 option is added.)					
	T/R (Yellow)	Lit while in Serial communication TX output (transmitting).					
Setting Structure	Setting method: Input system using membrane sheet key						

Indication Performance


Repeatability	Conductivity: ±0.5% of input span
	TDS conversion: ±1.5% of input span
Linearity	Conductivity: ±0.5% of input span
	TDS conversion: ±1.5% of input span
Indication Accuracy	Temperature: ±1°C
Input Sampling Period	250 ms (2 inputs)
Time Accuracy	Within $\pm 1\%$ of setting time
· · · · · · · · · · · · · · · · · · ·	-

Standard Functions

Conductivity Calibration	 Calibrate Conductivity Zero adjustment first, followed by Conductivity Span adjustment. However, if Loc 1 (Lock 1), Loc 2 (Lock 2) or Loc 3 (Lock 3) is selected in [Set value lock] (p.31), the unit cannot move to Conductivity calibration mode. In Conductivity Zero adjustment, adjustment is performed so that conductivity becomes 0, without immersing the 2-electrode Conductivity Sensor in the standard solution. In Conductivity Span adjustment, the 2-electrode Conductivity Sensor is immersed and adjustment is performed while checking conductivity. However, it is effective within the input rated range regardless of the adjustment value.
Temperature Calibration	When a sensor cannot be set at the exact location where measurement is desired, the resulting measured temperature may deviate from the temperature in the desired location. In this case, the desired temperature can be set for the desired location by setting a temperature calibration value. However, it is effective within the input rated range regardless of the temperature calibration value.
TDS Conversion	 TDS stands for Total Dissolved Solids. Conductivity of a solution results from the amount of salt, minerals or dissolved gas. Conductivity is an index indicating the total amount of a substance in a solution, and TDS indicates only the amount of all dissolved solid substances. TDS can be used correctly to compare the two solutions in which one ingredient, such as NaCl, is included. However, for comparison between a solution in which one ingredient such as NaCl is included and the other solution in which more than one ingredient is included, TDS error will occur.
	TDS and conductivity are expressed with the following formula. For Conductivity SI unit (mS/m): TDS (mg/L) = L (mS/m) × K × 10 For Conductivity older unit (μ S/cm): TDS (mg/L) = L (μ S/cm) × K K: TDS conversion factor, L: Conductivity

erial Communication	The following operations can be carried out from an external computer.					
	(1) Reading and setting of various set values(2) Reading of conductivity, temperature and status					
	(3) Function change, adjustment					
	(4) Reading and setting of user save area					
Cable Length	1.2 km (Max), Cable resistance value: Within 50 Ω (Terminators are not					
5	necessary, but if used, use 120 Ω minimum on both sides.)					
Communication	EIA RS-485					
Line Communication						
Method	Half-duplex communication					
Communication Speed	9600, 19200, 38400 bps (Selectable by keypad)					
Synchronization Method	Start-stop synchronization					
Code Form	ASCII, Binary					
Communication Protocol	Shinko protocol, MODBUS ASCII, MODBUS RTU (Selectable by keypad)					
Data Bit/Parity	8 bits/No parity, 7 bits/No parity, 8 bits/Even, 7 bits/Even, 8 bits/Odd,					
	7 bits/Odd (Selectable by keypad)					
Stop Bit	1, 2 (Selectable by keypad)					
Error Correction	Command request repeat system					
Error Detection	Parity check, Checksum (Shinko protocol), LRC (MODBUS protocol ASCII), CRC-16 (MODBUS protocol RTU)					
Data Format	Communication Protocol	Shinko Protocol	MODBUS	MODBUS RTU		
	Start bit	1	1	1		
	Data bit	7	7 (8) Selectable	8		
	Parity	Even	Even (No parity, Odd) Selectable	No parity (Even, Odd) Selectable		
	Stop bit	1	1 (2) Selectable	1 (2) Selectable		

Insulation/Dielectric Strength

Attached Functions

ttached Functions							
Set Value Lock	Lock 1: None			-			
	Lock 2: Only				•		
			•		ant, Measurement unit,		
	Measu	urement rang	e, Conduct	ivity Zero a	nd Span adjustment values,		
	Tempe	erature calibr	ation value	, Transmiss	ion output 1 Zero and Span		
	adjust	ment values,	Transmiss	ion output 2	2 Zero and Span adjustment		
	values	s – can be ter	mporarily ch	nanged.			
	values – can be temporarily changed. However, they revert to their previous value after the power is turned						
	off because they are not saved in the non-volatile IC memory.						
Conductivity Input	When a sensor cannot be set at the exact location where measurement is						
Sensor Correction	desired, the sensor-measured conductivity may deviate from the conductivity						
	in the measured location. In such a case, desired conductivity can be						
	obtained by adding a sensor correction value. However, it is effective within						
	the measurement range regardless of the sensor correction value.						
Outside Measurement					onversion factor is		
Range	outside the m	easurement	range:				
	Condu	uctivity Disp	lay	Те	mperature Display		
	Conductivity				temperature		
	high limit is fla	ashing.					
	When measu	red temperat	turo is outsi	da tha maa	surement range, the		
	following will			ue ine mea	sulement range, the		
		activity Disp		Temperature Display			
			nay		0.0°C: 돈-입식		
		Measured conductivity					
Power Failure	Measured conductivity Exce The setting data is backed up in the non-vol			xceeding 110.0℃: 도구답글			
Countermeasure	The setting u		up in the r	ion-volatile	ic memory.		
Self-diagnosis	The CPU is r	nonitored by	a watchdo	g timer, and	d if an abnormal status		
	occurs, the instrument is switched to warm-up status.						
Warm-up Indication	For approx. 4 seconds after the power is switched ON, the input characters						
	are indicated on the Conductivity Display and Temperature Display.						
	Display	Character		Measurement Unit			
	Conductivity	conti Si	Conductiv	ity (µS/cm)			
			Conductivity (mS/m)				
	Display	<i>Г</i> ач			1)		
			TDS conversion (mg/L) Input Temperature Selection Item in [Pt100]				
	Display	Character	Specific		Input Wire Type (p.30)]		
		PC_2 PC_3	-		F' C': 2-wire type		
	Temperature		Pt100		FI 3-wire type		
	Display	PF ID Pt1000					
	(*) This input			n was shar	sified at the time of		
	(*) This input temperature specification was specified at the time of ordering.						
Display Sleep		Temperature	or No indic	ration can h	e selected in [Display		
Function							
	selection (p.34)], which is indicated in Conductivity/Temperature Display Mode. If Conductivity and/or Temperature is selected, and if indication time is set,						
	the displays become unlit after the indication time has passed from no						
			after the ind	dication time	e has passed from no		
	the displays b	become unlit			-		
	the displays to operation state	become unlit tus. If any er	rors occur,	or if any ke	y is pressed, the display will		
	the displays to operation star re-light. If the	become unlit tus. If any en e indication f	rors occur,	or if any ke	-		
Auto-light Function	the displays to operation state re-light. If the function does	become unlit tus. If any en e indication to not work.	rors occur, o time is set	or if any key to 0, the d	y is pressed, the display will lisplay remains lit, and this		
Auto-light Function	the displays to operation stare-light. If the function does Automatically	become unlit tus. If any en e indication to not work.	time is set	or if any key to 0, the d brightness	y is pressed, the display will		
-	the displays to operation star re-light. If the function does Automatically Temperature	become unlit tus. If any en e indication to not work. measures a Display and	rors occur, o time is set nd controls action indic	or if any key to 0, the d brightness ators.	y is pressed, the display will lisplay remains lit, and this of the Conductivity Display,		
Cable Length	the displays to operation stare-light. If the function does Automatically Temperature	become unlit tus. If any en e indication to not work. measures a Display and wire type) is	rors occur, o time is set nd controls action indic	or if any key to 0, the d brightness ators. n [Pt100 inp	y is pressed, the display will lisplay remains lit, and this of the Conductivity Display, out wire type (p. 30)], and if		
-	the displays to operation stare-light. If the function does Automatically Temperature If PTC2 (2- sensor cable	become unlit tus. If any en e indication to not work. measures a Display and wire type) is is too long,	rors occur, e time is set nd controls action indic selected ir temperature	or if any key to 0, the d brightness ators. n [Pt100 inp e measurer	y is pressed, the display will lisplay remains lit, and this of the Conductivity Display, out wire type (p. 30)], and if ment error will occur due to		
Cable Length	the displays to operation stare-light. If the function does Automatically Temperature If PTC2 (2- sensor cable	become unlit tus. If any en indication to not work. measures a Display and wire type) is is too long, ance. This o	nd controls action indic selected ir temperature can be co	brightness ators. Prightness ators. Prightness brightness ators. Prightness b	y is pressed, the display will lisplay remains lit, and this of the Conductivity Display, out wire type (p. 30)], and if		

Error Code	The following error codes flash on the Temperature Display.				
	Error	Error	Error	Description	Occurrence
	Code	Туре	Contents		
	E-01	Fail	Temp. Sensor	Temperature sensor lead	
		Fall	burnout	wire is burnt out.	
	5-02	E 「ロビ」 Fail Temp. Sensor Temperature sensor le	Temperature sensor lead	When	
		Fall	short-circuited	wire is short-circuited.	measuring
	Er03	Error	Outside temp.	Measured temperature or	or
		EII0	compensation	has exceeded 110.0℃.	calibrating
	ЕгОЧ	Error	Outside temp.	Measured temperature	
		compensation	is less than 0.0℃.		
	(Abbreviati	on: Temp.:	Temperature)		

Other

Power Consumption	Approx. 8 VA
Ambient Temperature	0 to 50°℃ (32 to 122°F)
Ambient Humidity	35 to 85 %RH (non-condensing)
Altitude	2,000 m or less
Weight	Approx. 200 g (including the socket)
Accessories Included	Instruction manual: 1 copy
	Unit label: 1 sheet
Accessories Sold	Socket: ASK-001-1 (Finger-safe and screw fall prevention)
Separately	
Environmental	RoHS directive compliant
Specification	

12.2 Optional Specifications

A Output (Option Code: EVT or TA)

	If the measured value exceeds the A	volue the A output will be			
A Output	turned ON for each $A \square$ output type	· · · ·			
		ing on the settings in [A1/A2 output			
		me/OFF time when A1/A2 output ON			
		me/OFF time when AT/AZ output ON			
	(pp.35, 36)].				
		I, A output status can be read via			
	Status flag 1 (A11, A12, A21, A22 out				
	$A \square$ output status, when input errors occur, differs depending on the selection in [A \square output when input errors occur (p.29)] as follows.				
	• If $\sigma F F$ (Disabled) is selected in [A output when input errors occur				
	input errors occur.	(p.29)], the A output and A output status will be turned OFF if			
		[A output when input errors occur			
		output status will be maintained if			
	input errors occur.				
	During conductivity calibration, A	action is forced OFF			
	.	ordered, only A1 output can be added.			
Action	ON/OFF action				
A ON side,	Setting range differs depending on th	e selection of A type and			
	measurement range.				
	Conductivity input low limit and h	nigh limit actions			
	Cell constant 0.01/cm	0			
	Measurement Range	Setting Range			
	0.000 to 2.000 µS/cm	0.000 to 0.200 µS/cm			
	0.00 to 20.00 µS/cm	0.00 to 2.00 <i>µ</i> S/cm			
	0.00 to 50.00 µS/cm	0.00 to 5.00 µS/cm			
	0.000 to 0.200 mS/m	0.000 to 0.020 mS/m			
	0.000 to 2.000 mS/m	0.000 to 0.200 mS/m			
	0.000 to 5.000 mS/m	0.000 to 0.500 mS/m			
	0.00 to 2.00 mg/L	0.00 to 0.20 mg/L			
	0.0 to 20.0 mg/L	0.0 to 2.0 mg/L			
	0.0 to 50.0 mg/L	0.0 to 5.0 mg/L			
	Cell constant 0.1/cm				
	Measurement Range	Setting Range			
	0.00 to 20.00 µS/cm	0.00 to 2.00 µS/cm			
	0.00 to 50.00 <i>µ</i> S/cm	0.00 to 5.00 <i>µ</i> S/cm			
	0.0 to 500.0 <i>µ</i> S/cm	0.0 to 50.0 <i>µ</i> S/cm			
	0.000 to 2.000 mS/m	0.000 to 0.200 mS/m			
	0.000 to 5.000 mS/m	0.000 to 0.500 mS/m			
	0.00 to 50.00 mS/m	0.00 to 5.00 mS/m			
	0.0 to 20.0 mg/L	0.0 to 2.0 mg/L			
	0 to 200 mg/L				
	0	0 to 20 mg/L			
	0 to 500 mg/L 0 to 50 mg/L				
Cell constant 1.0/cm					
	Measurement Range	Setting Range			
	0.0 to 200.0 <i>µ</i> S/cm	0.0 to 20.0 µS/cm			
	0.00 to 20.00 mS/m	0.00 to 2.00 mS/m			
	0 to 200 mg/L	0 to 20 mg/L			
	Temperature input low limit and high limit actions				
	Measurement Range	Setting Range			
	0.0 to 100.0℃	0.0 to 10.0℃			

Output	Relay contact, 1a		
	Control	3A 250 V AC (Resistive load)	
	capacity	1A 250 V AC (Inductive load $\cos\phi$ =0.4)	
	Electrical	100,000 cycles	
	life		
A ON delay	0 to 9999 sec	conds	
A OFF delay	0 to 9999 sec	conds	
A1, A2 output	For A1 (or A2	e) output, A11 type, A12 type, A21 type and/or A22 type can be	
allocations	allocated. Ou	Itput is OR output.	
Output ON time/	If Output ON	time and OFF time are set, A1 (or A2) output can be turned	
OFF time when	ON/OFF in a configured cycle when A1 (or A2) output is ON.		
A1/A2 output ON			
Conductivity input	Detects actuator trouble.		
error alarm	Even if conductivity input error alarm time has elapsed, and if conductivity input does not become higher than conductivity input error alarm band, the unit assumes that actuator trouble has occurred, and writes Status flag 2 (A1, A2 conductivity input error alarm output flag bit).		
	In Serial communication, status can be read by reading Status flag 2 (A1, A2 conductivity input error alarm output flag bit).		
	Conductivity input error alarm is disabled during Conductivity Zero or Span adjustment.		
	Conductivity input error alarm is enabled only when $\mathcal{E}_{\mathcal{L}} = \mathcal{L}$ (Conductivinput low limit action) or $\mathcal{E}_{\mathcal{L}} = \mathcal{H}$ (Conductivity input high limit action) selected in [A11, A12, A21, A22 type (pp.23, 24)].		

Transmission Output 1 (Option Code: TA)

Transmission Output 1	ut 1 Converting conductivity or temperature to analog signal every input				
	sampling period, and outputs the value in current.				
	If $\Box \not \vdash \not \vdash \Box$ (No temperature compensation) is selected in [Temperature				
	compensation metho	compensation method (p.30)], and if $\int E \sigma F$ (Temperature transmission)			
	is selected in [Transm	nission output 1 type (p.32)], Transmission output 1			
	value will differ deper	nding on the selection in [Temperature Display when			
	no temperature comp	pensation (p.34)] as follows.			
	• If <i>ロ</i> ドド□ (Unlit)	or $\neg f d \square$ (Reference temperature) is selected, the			
		ence temperature (p.30)] will be output.			
	• If <i>PB</i> (Measu	ured value) is selected, the measured value will be			
	output.				
	If Transmission output 1 high limit and low limit are set to the same value,				
	Transmission output 1 will be fixed at 4 mA DC.				
	Resolution	12000			
	Current	4 to 20 mA DC (Load resistance: Max. 550 Ω)			
	Output accuracy	Within ±0.3% of Transmission output 1 span			
Transmission	Fine adjustment of the	e Transmission output 1 can be performed via			
output 1 adjustment	Transmission output 1 Zero and Span adjustments.				
Transmission	Selects Transmission output 1 status when calibrating conductivity.				
output 1 status Last value HOLD		Retains the last value before conductivity			
when calibrating		calibration, and outputs it.			
Set value HOLD		Outputs the value set in [Transmission output 1 value			
		HOLD when calibrating].			
	Measured value	Outputs the measured value when calibrating			
		conductivity.			

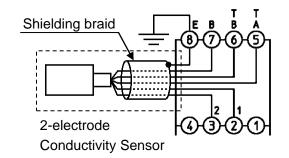
Transmission Output 2 (Option Code: TA2)

		Converting conductivi	ty or temperature to english signal even (insut		
Transmission	Output 2	Converting conductivity or temperature to analog signal every input			
		sampling period, and outputs the value in current.			
		If $\Box \mathcal{F} \mathcal{F} \square$ (No temperature compensation) is selected in [Temperature			
		•	od (p.30)], and if <i>にとうに</i> (Temperature transmission)		
			mission output 2 type (p.32)], Transmission output 2		
		value will differ depe	nding on the selection in [Temperature Display when		
			pensation (p.34)] as follows.		
		・If <i>ュ두두</i> □ (Unlit) c	or $\neg f d \square$ (Reference temperature) is selected, the		
		value set in [Refer	ence temperature (p.30)] will be output.		
		・If <i>P出</i> (Measu	red value) is selected, the measured value will be		
		output.			
		If Transmission output 2 high limit and low limit are set to the same value,			
		Transmission output 2 will be fixed at 4 mA DC.			
		Resolution 12000			
		Current 4 to 20 mA DC (Load resistance: Max. 550 Ω)			
		Output accuracy Within ±0.3% of Transmission output 2 span			
Transmis	ssion	Fine adjustment of the Transmission output 2 can be performed via			
output 2 a	adjustment	Transmission output 2	2 Zero and Span adjustments.		
Transmis	ssion	Selects Transmission output 2 status when calibrating conductivity.			
output 2	status	Last value HOLD Retains the last value before conductivity			
when ca	librating	calibration, and outputs it.			
		Set value HOLD Outputs the value set in [Transmission output 2 va			
		HOLD when calibrating].			
		Measured value Outputs the measured value when calibrating			
			conductivity.		

13. Troubleshooting

If any malfunction occurs, refer to the following items after checking that power is being supplied to the WIL-102-ECL.

13.1 Indication


Problem	Possible Cause	Solution
The Conductivity/	nonE (No Indication) is selected	Select RLL (Conductivity/
Temperature Display is	in [Display selection (p.34)].	Temperature).
unlit.	The time set in [Indication time	If any key is pressed while displays
	(p.34)] has passed.	are unlit, they will re-light.
		Set the indication time to a suitable
		time-frame.
The Conductivity/	$U \neg E$ (Enabled) is selected in	Select (Disabled).
Temperature Display is dark.	[Auto-light function (p.34)].	
Indication of the	Conductivity calibration and	Perform conductivity calibration
Conductivity/Temperature Display is unstable or	temperature calibration may not have finished.	and temperature calibration.
irregular.	Specifications of 2-electrode	Replace the sensor with a
	Conductivity Sensor may not be	suitable one.
	suitable.	
	There may be equipment that	Keep WIL-102-ECL clear of any
	interferes with or makes noise near	potentially disruptive equipment.
	the WIL-102-ECL.	Try [Grounding of shield wire
		terminal (E)].
Temperature Display is	$\Box \mathcal{F} \mathcal{F} \square$ (Unlit) is selected in	Select '¬/¯ d (Reference
unlit.	[Temperature Display when no	temperature) or PB
	temperature compensation (p.34)].	(Measured value).
$[E - \overline{G} \]$ is flashing on the	The temperature sensor lead wire	Replace the temperature sensor.
Temperature Display.	is burnt out.	
$[\mathcal{E} \cap \mathcal{D}\mathcal{E}]$ is flashing on the	The temperature sensor lead wire	Replace the temperature sensor.
Temperature Display.	is short-circuited.	
$[\mathcal{E} \cap \mathcal{D}\mathcal{B}]$ is flashing on the	Measured temperature has	Check the environment of
Temperature Display.	exceeded 110.0°୦.	measurement location.
$[\mathcal{E} \cap \mathcal{D}^{\mathcal{H}}]$ is flashing on the	Measured temperature is less than	Check the environment of
Temperature Display.	0.0°C.	measurement location.
$[\mathcal{E} \neg \neg l]$ is indicating on	Internal memory is defective.	Contact our agency or us.
the Conductivity Display.		

• Grounding of shield wire terminal (E)

If the indication fluctuates due to noise, ground the shield wire terminal (E).

However, depending on the installation environment, the symptom may not be improved.

In this case, disconnect the grounding of the shield wire terminal (E) and return it to the original state. (Depending on the type of sensor, the cable for the shield wire terminal (E) may not be available.)

13.2 Key Operation

Problem	Possible Cause	Solution
None of the set values can	$L \Box c$ i (Lock 1) is selected in [Set	Select (Unlock).
be changed.	value lock (p.31)].	
The values do not change		
by the \bigtriangleup , \bigtriangledown keys.		
Only A value can be	$L \Box \Box \Box \overline{\Box}$ (Lock 2) is selected in [Set	Select (Unlock).
set. Other settings are	value lock (p.31)].	
impossible.		
The values do not change		
by the \bigtriangleup , \bigtriangledown keys.		

13.3 Calibration

Problem	Possible Cause	Solution
Span adjustment does not work or does not work well	Is Zero adjustment being performed with the 2-electrode Conductivity Sensor immersed in the standard solution?	 Perform Zero adjustment without immersing the sensor in the standard solution. Clear the adjustment by hanging the cell constant (p.22), measurement unit (p.22), and measurement range (p.23) of the sensor, and then perform re-calibration.

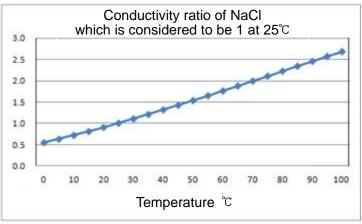
13.4 Communication

Check that power is being supplied to the master and slave that customers use. If communication failure still occurs, check the following.

Problem	Possible Cause	Solution
Communication failure	Communication cable is not	Check the communication cable
	securely connected, or is	and connector.
	disconnected/defective.	
	Incorrect wiring of the	Check the communication cable
	communication cable and/or	and connector.
	connector	
	Imperfect contact between the	Check the communication cable
	communication cable and the	and connector.
	connector, or between the	
	communication connector and	
	instrument port	
	Communication speed of the slave	Check the communication speed
	does not match that of the master.	of the slave and master.
	The data bit, parity and stop bit of	Check the data bit, parity and
	the master do not correspond to	stop bit of the master and the
	those of the slave.	slave.
	The instrument number (address)	Check the instrument number
	of the slave does not correspond	(address) of the slave and
	to that of the command.	command.
	The instrument numbers	Check the instrument numbers
	(addresses) are duplicated in	(addresses) of the slave.
	multiple slaves.	
	Make sure that the program is	Check the program.
	appropriate for the transmission	
	timing.	

Although communication is occurring, the response	A non-existent command code has been sent.	Check the command code.
is negative acknowledge- ment.	The setting command data exceeds the setting range of the slave.	Check the setting range of the slave.
	The WIL-102-ECL cannot be set during calibration mode.	Check the slave status.
	The WIL-102-ECL is in the front keypad operation setting mode.	Return the unit to Conductivity/ Temperature Display Mode.

14. Temperature Compensation Method


14.1 Temperature Compensation Based on the Temperature Characteristics of NaCl

When the main ingredient of the salt contained in a sample is NaCl, use temperature compensation method based on the temperature characteristics of NaCl.

Conductivity of NaCl solution varies with the ratio based on the conductivity at 25° C as shown below. The conductivity at 25° C is calculated on the basis of the conductivity ratio at each temperature in (Table 14.1-1).

Tempera-	Conductivity	Coeffi-
ture (°C)	ratio of NaCI	cient
0	0.542	1.845
5	0.626	1.596
10	0.715	1.399
15	0.806	1.240
20	0.902	1.109
25	1.000	1.000
30	1.101	0.908
35	1.205	0.830
40	1.312	0.762
45	1.420	0.704
50	1.531	0.653
55	1.643	0.609
60	1.757	0.569
65	1.872	0.534
70	1.987	0.503
75	2.103	0.476
80	2.219	0.451
85	2.335	0.428
90	2.450	0.408
95	2.564	0.390
100	2.677	0.374

(Table 14.1-1)

14.2 How to Input Temperature Coefficient

Temperature compensation is conducted using temperature coefficient (%/ $^{\circ}$ C) and a randomly selected reference temperature.

Conductivity of the solution varies depending on the temperature.

If temperature rises by 1°C, the conductivity rises by 2% at 25°C basis in general.

Temperature coefficient differs depending on the solution type and its concentration, which ranges from 0.50 to 2.50.

By inputting the temperature coefficient, temperature compensation can be calculated to find the conductivity at 25°C.

Temperature coefficient 2.00 %/°C can be used for most of solutions.

If temperature coefficient of solution is already-known, enter the value. (Table 14.2-1)

If the conductivity at an arbitrary temperature $T^{\circ}C$ is already-known, and if reference temperature is $ST^{\circ}C$, conductivity $C_{(ST)}$ at the reference temperature can be obtained according to the following formula.

$$C_{(ST)} = \frac{C_{(T)}}{(1 + 0.01 \times \alpha \times (T - ST))}$$

 $C_{(ST)}$: Conductivity of the solution at ST[°]C

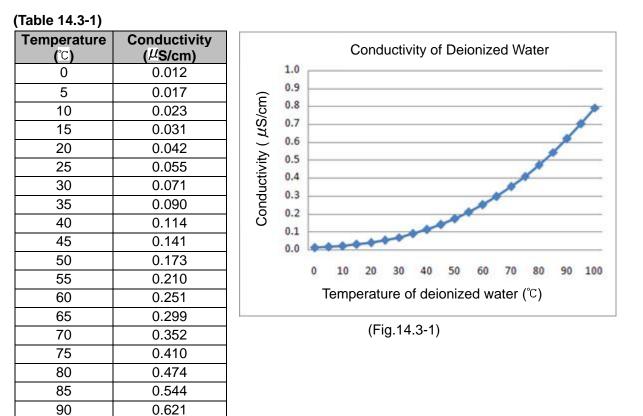
 $C_{(T)}$: Conductivity of the solution at T[°]C

- α : Temperature coefficient of conductivity (%)
- *T*: Arbitrary temperature $T^{\circ}C$
- ST: Reference temperature ST[℃]

T-LL		A A A
(Table	2 14.2	2-1)

(12	able 14.2	-	Conduo	Tamporofuro		Tompo	Concon	Conduo	Tommoroturo
Sub-	Tempe- rature	Concen-	Conduc-	Temperature coefficient	Sub-	Tempe-	Concen-	Conduc-	Temperature coefficient
stance	rature (℃)	tration Wt%	tivity S/m	(%/℃)	stance	rature (℃)	tration Wt%	tivity S/m	(%/℃)
		5	19.69	2.01			<u> </u>	6.72	2.17
		10	31.24	2.17	NaCl	10	<u>10</u> 15	12.11	2.14 2.12
NaOH	15	15	34.63	2.49	NaCl	18		16.42	
		20	32.70	2.99			20	19.57	2.16
		30	20.22	4.50			25	21.35	2.27
		40	11.64	6.48		10	5	4.09	2.36
		25.2	54.03	2.09	Na ₂ SO ₄	18	10	6.87	2.49
КОН	15	29.4	54.34	2.21			15	8.86	2.56
		33.6	52.21	2.36		10	5	4.56	2.52
		42	42.12	2.83	Na ₂ CO ₃	18	10	7.05	2.71
		0.1	0.0251	2.46			15	8.36	2.94
	. –	1.6	0.0867	2.38			5	6.90	2.01
NH ₃	15	4.01	0.1095	2.50			10	13.59	1.88
		8.03	0.1038	2.62	KCI	18	15	20.20	1.79
		16.15	0.0632	3.01			20	26.77	1.68
		1.5	1.98	0.72			21	28.10	1.68
HF	18	4.8	5.93	0.66			5	4.65	2.06
		24.5	28.32	0.58	KBr	15	10	9.28	1.94
		5	39.48	1.58			20	19.07	1.77
HCI	18	10	63.02	1.56			3.25	5.07	2.07
1101	10	20	76.15	1.54	KCN	15	6.5	10.26	1.98
		30	66.20	1.52		-	-	-	
		5	20.85	1.21			5	9.18	1.98
		10	39.15	1.28			10	17.76	1.86
		20	65.27	1.45	NH₄CI	18	15	25.86	1.71
		40	68.00	1.78			20	33.65	1.61
H_2SO_4	18	50	54.05	1.93			25	40.25	1.54
		60	37.26	2.13			5	5.90	2.03
		80	11.05	3.49	NH4NO3	15	10	11.17	1.94
		100.14	1.87	0.30	111141103	15	30	28.41	1.68
		-	I	-			50	36.22	1.56
		6.2	31.23				2.5	10.90	2.13
		12.4	54.18		CUSO	10	5	18.90	2.16
HNO ₃	18	31	78.19		CuSO ₄	18	10	32.00	2.18
		49.6	63.41		1		15	42.10	2.31
		62	49.64				10	15.26	1.69
		10	5.66				15	16.19	1.74
		20	11.29			10	20	16.05	1.79
H ₃ PO ₄	15	40	20.70		CH₃COOH	18	30	14.01	1.86
		45	20.87		-		40	10.81	1.96
		50	20.73				60	4.56	2.06

14.3 Temperature Compensation Based on the Temperature Characteristics of Deionized Water


Conductivity of deionized water is calculated by adding conductivity of deionized water to conductivity caused by ionic impurities.

$C_{(T)} = F_{(T)} + G_{(T)}$

- $C_{(T)}: \ \ Conductivity \ of \ solution \ at \ T^\circ\! C$
- $F_{(T)}$: Conductivity of deionized water at $T^{\circ}\!C$
- $G_{(T)}: \ \ Conductivity caused by ionic impurities at <math display="inline">T^\circ\!C$

Conductivity of Deionized Water

Conductivity of deionized water is caused by dissociation of water molecules. The dissociation of water molecules is greatly affected by the change of temperature. Conductivity of deionized water is measured based on the characteristics in (Table 14.3-1) (ASTM D 1125-91, JISK0130-1995).

Conductivity Caused by Ionic Impurities

0.703

0.793

95

100

Conductivity caused by ionic impurities can be calculated based on the NaCl characteristics in Section 14.1 (p.79).

15. Character Tables

The following shows our character tables. Use data column for your reference.

Setting Groups

Character	Setting Group	
F.nc. I	Conductivity Input Group	
F.nc.2	Temperature Input Group	
al Er	Basic Function Group	

Temperature Calibration Mode

Character	Setting Item, Setting Range	Factory Default	Data
<u> ちゅ</u> (*)	Temperature calibration value	0.0°C	
00	Setting range: -10.0 to 10.0℃		

(*) '- a and temperature are displayed alternately.

Conductivity Calibration Mode

Character	Setting Item, Setting Range	Factory Default	Data
8dJΞ(*1)	Conductivity Zero adjustment value	0.00	
0000	See (Table 15-1). (p.82)		
<u> </u>	Conductivity Span adjustment value	1.000	
1000	Setting range: 0.700 to 1.300		

(*1) $RdJ\Xi$ and conductivity are displayed alternately. (*2) RdJ' and conductivity are displayed alternately.

(Table 15-1)

Meas	urement Range	Conductivity Zero Adjustment Value Setting Range
	2.000 µS/cm	-0.200 to 0.200 <i>µ</i> S/cm
	20.00 µS/cm	-2.00 to 2.00 µS/cm
	50.00 µS/cm	-5.00 to 5.00 <i>µ</i> S/cm
Cell	0.200 mS/m	-0.020 to 0.020 mS/m
constant	2.000 mS/m	-0.200 to 0.200 mS/m
0.01/cm	5.000 mS/m	-0.500 to 0.500 mS/m
	2.00 mg/L	-0.20 to 0.20 mg/L
	20.0 mg/L	-2.0 to 2.0 mg/L
	50.0 mg/L	-5.0 to 5.0 mg/L
	20.00 µS/cm	-2.00 to 2.00 <i>µ</i> S/cm
	50.00 µS/cm	-5.00 to 5.00 <i>µ</i> S/cm
	500.0 µS/cm	-50.0 to 50.0 <i>µ</i> S/cm
Cell	2.000 mS/m	-0.200 to 0.200 mS/m
constant	5.000 mS/m	-0.500 to 0.500 mS/m
0.1/cm	50.00 mS/m	-5.00 to 5.00 mS/m
	20.0 mg/L	-2.0 to 2.0 mg/L
	200 mg/L	-20 to 20 mg/L
	500 mg/L	-50 to 50 mg/L
Cell	200.0 µS/cm	-20.0 to 20.0 µS/cm
constant	20.00 mS/m	-2.00 to 2.00 mS/m
1.0/cm	200 mg/L	-20 to 20 mg/L

Transmission Output 1 Adjustment Mode

Character	Setting Item, Setting Range	Factory Default	Data
RJEI	Transmission output 1 Zero	0.00%	
000	adjustment value		
	Setting range: ±5.00% of Transmission output 1 span		
8ปรา	Transmission output 1 Span	0.00%	
000	adjustment value		
	Setting range: ±5.00% of Transmission output 1 span		

Transmission Output 2 Adjustment Mode

Character	Setting Item, Setting Range	Factory Default	Data
SJE2	Transmission output 2 Zero	0.00%	
000	adjustment value		
	Setting range: ±5.00% of Transmission output 2 span		
8352	Transmission output 2 Span	0.00%	
000	adjustment value		
	Setting range: ±5.00% of Transmission output 2 span		

Conductivity Input Group

Character	Setting Item, Setting Range	Factory Default	Data
cELL	Sensor cell constant	0.01/cm	
<u> </u>	Selection item:		
	<i>□□□□ l</i> : 0.01/cm		
	□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□		
	🛄 🖾 : 1.0/cm		
coEF	Cell constant correction value	1.000	
1000	Setting range: 0.001 to 5.000		
Uni F	Measurement unit	Conductivity (μ S/cm)	
conð	Selection item:		
	<i>ェロ</i> ロ岩 : Conductivity (µS/cm)		
	ילי : Conductivity (mS/m)		
	「ゴ'¬□ : TDS conversion (mg/L)		
nrnG	Measurement range	2.000 µS/cm	
2.000	See (Table15-2) (p.83).		

(Table 15-2)

Cell Constant	Measurement Unit	Selection Item	Measurement Range
	Conductivity (μ S/cm)	2000	0.000 to 2.000 µS/cm
	Conductivity (µS/cm)	2000	0.00 to 20.00 µS/cm
	Conductivity (µS/cm)	5000	0.00 to 50.00 <i>µ</i> S/cm
	Conductivity (mS/m)	0200	0.000 to 0.200 mS/m
0.01/cm	Conductivity (mS/m)	2000	0.000 to 2.000 mS/m
	Conductivity (mS/m)	5000	0.000 to 5.000 mS/m
	TDS conversion (mg/L)	2.00	0.00 to 2.00 mg/L
	TDS conversion (mg/L)	200	0.0 to 20.0 mg/L
	TDS conversion (mg/L)	500	0.0 to 50.0 mg/L
	Conductivity (μ S/cm)	2000	0.00 to 20.00 µS/cm
	Conductivity (μ S/cm)	5000	0.00 to 50.00 <i>µ</i> S/cm
	Conductivity (μ S/cm)	5000	0.0 to 500.0 <i>µ</i> S/cm
	Conductivity (mS/m)	2000	0.000 to 2.000 mS/m
0.1/cm	Conductivity (mS/m)	5000	0.000 to 5.000 mS/m
	Conductivity (mS/m)	5000	0.000 to 50.00 mS/m
	TDS conversion (mg/L)	200	0.0 to 20.0 mg/L
	TDS conversion (mg/L)	200	0 to 200 mg/L
	TDS conversion (mg/L)	500	0 to 500 mg/L
	Conductivity (μ S/cm)	2000	0.0 to 200.0 <i>µ</i> S/cm
1.0/cm	Conductivity (mS/m)	2000	0.00 to 20.00 mS/m
	TDS conversion (mg/L)	200	0 to 200 mg/L

Character	Setting Item, Setting Range	Factory Default	Data
FdhE	TDS conversion factor	0.50	
050	Setting range: 0.30 to 1.00		
RIIF	A11 type	No action	
	Selection item:		
	: No action		
	E = L: Conductivity input low limit		
	E = H: Conductivity input high limit		
	$\int \bar{\alpha} P L$: Temperature input low limit		
	ビュアガ : Temperature input high lim Ecロビ : Err output	lit action	
	ERL : Fail output		
	$\mathcal{E} \subset \mathcal{H} \mathcal{L}$: Conductivity input High/Lo	w limits independent action	
	「 ー ー : Temperature input High/Lo		
8 IZF	A12 type	No action	
	Selection item: Same as those of A1	1 type	
82 IF	A21 type	No action	
	Selection item: Same as those of A1	1 type	
822F	A22 type	No action	
	Selection item: Same as those of A1	1 type	
811	A11 value	Conductivity input: 0.000 μ S/cm	
<i>aooo</i>		Temperature input: 0.0℃	
	Setting range: Conductivity input low limit, high limit a	ational	
	Measurement range low limit to Me		
	Temperature input low limit, high lim		
	0.0 to 100.0°C (*2)		
R 12	A12 value	Conductivity input: 0.000 μ S/cm	
0000		Temperature input: 0.0℃	
	Setting range: Same as those of A11	1 value	
R2 I()	A21 value	Conductivity input: 0.000 μ S/cm	
aooo		Temperature input: 0.0℃	
	Setting range: Same as those of A11		
R220	A22 value	Conductivity input: 0.000 μ S/cm	
0000		Temperature input: 0.0℃	
	Setting range: Same as those of A11		
8118	A11 hysteresis type	Reference value	
Sdl F	Selection item:		
	<i>らぱ ^に</i> : Reference value		

(*1) The measurement unit and decimal point place follow the measurement range.

(*2) The placement of the decimal point does not follow the selection. It is fixed.

Character	Setting Ite	em, Setting Range	Factory Default	Data
RIIU	A11 ON side		Conductivity input: 0.001 µS/cm	
aaa i			Temperature input: 1.0℃	
	(Table 15-3)			
	Conductivity input:			
	Me	asurement Range	Setting Range	
		0.000 to 2.000 µS/cm		
		0.00 to 20.00 µS/cm	0.00 to 2.00 µS/cm	
		0.00 to 50.00 µS/cm	0.00 to 5.00 µS/cm	
	Cell	0.000 to 0.200 mS/m	0.000 to 0.020 mS/m	
	constant	0.000 to 2.000 mS/m	0.000 to 0.200 mS/m	
	0.01/cm	0.000 to 5.000 mS/m	0.000 to 0.500 mS/m	
		0.00 to 2.00 mg/L	0.00 to 0.20 mg/L	
		0.0 to 20.0 mg/L	0.0 to 2.0 mg/L	
		0.0 to 50.0 mg/L	0.0 to 5.0 mg/L	
		0.00 to 20.00 µS/cm	0.00 to 2.00 µS/cm	
		0.00 to 50.00 µS/cm	0.00 to 5.00 µS/cm	
		0.0 to 500.0 µS/cm	0.0 to 50.0 <i>µ</i> S/cm	
	Cell	0.000 to 2.000 mS/m	0.000 to 0.200 mS/m	
	constant	0.000 to 5.000 mS/m	0.000 to 0.500 mS/m	
	0.1/cm	0.00 to 50.00 mS/m	0.00 to 5.00 mS/m	
		0.0 to 20.0 mg/L	0.0 to 2.0 mg/L	
		0 to 200 mg/L	0 to 20 mg/L	
		0 to 500 mg/L	0 to 50 mg/L	
	Cell	0.0 to 200.0 µS/cm	0.0 to 20.0 µS/cm	
	constant	0.00 to 20.00 mS/m	0.00 to 2.00 mS/m	
	1.0/cm	0 to 200 mg/L	0 to 20 mg/L	
	Tomorenetur	- I		
		Temperature input: Measurement Range Setting Range		
	0.0 to 100.			
	0.0 10 100.			
RIIL	A11 OFF side		Conductivity input: 0.001 µS/cm	
QOO (Temperature input: 1.0℃	
	Setting range	e: Same as those of A11	ON side (p.85)	
R 128	A12 hysteresi	s type	Reference value	
Sdl F	Selection ite	m: Same as those of A1	1 hysteresis type (p.84)	
R 12U	A12 ON side		Conductivity input: 0.001 μ S/cm	
000 /			Temperature input: 1.0℃	
		e: Same as those of A1		
RIZL	A12 OFF side		Conductivity input: 0.001 μ S/cm	
aoo i			Temperature input: 1.0℃	
		e: Same as those of A1		
82 Id	A21 hysteresi		Reference value	
531 F		m: Same as those of A1	1 hysteresis type (p.84)	
N2 IU	A21 ON side		Conductivity input: 0.001 μ S/cm	
aoo i			Temperature input: 1.0°C	
		e: Same as those of A1		
82 IL	A21 OFF side		Conductivity input: 0.001 μ S/cm	
000 I		_	Temperature input: 1.0°C	
		Setting range: Same as those of A11 ON side (P.85)		
8224	A22 hysteresi		Reference value	
Sdl F	Selection ite	m: Same as those of A1	1 hysteresis type (p.84)	

Character	Setting Item, Setting Range	Factory Default	Data
822U		1 μ S/cm, Temperature input: 1.0°C	
0001	Setting range: Same as those of A11 C	N side (p 85)	
8221	A22 OFF side Conductivity input: 0.007		
	Setting range: Same as those of A11 C		
816	A11 ON delay time	0 seconds	
		0 seconds	
	Setting range: 0 to 9999 seconds		
R 12o	A12 ON delay time	0 seconds	
	Setting range: 0 to 9999 seconds		
R2 lo	A21 ON delay time	0 seconds	
	Setting range: 0 to 9999 seconds		
8220	A22 ON delay time	0 seconds	
<i>0</i>	Setting range: 0 to 9999 seconds		
$R \mid I_{C}$	A11 OFF delay time	0 seconds	
	Setting range: 0 to 9999 seconds		
R IZc	A12 OFF delay time	0 seconds	
<i>0</i>	Setting range: 0 to 9999 seconds		
R2 Ic	A21 OFF delay time	0 seconds	
Ē	Setting range: 0 to 9999 seconds		
822c	A22 OFF delay time	0 seconds	
	Setting range: 0 to 9999 seconds	0 00001100	
Riin	A11 High/Low limits independent	Conductivity input: 0.000 μ S/cm	
0000	lower side span	Temperature input: 0.0°C	
	Setting range:	· · · ·	
	Conductivity input: Measurement range		
	Measurement rang	e high limit (*1)	
	Temperature input: 0.0 to 100.0°C (*2) A12 High/Low limits independent	Conductivity instate 0.000 //C/arr	
8 12n nnnn	lower side span	Conductivity input: 0.000 μ S/cm Temperature input: 0.0°C	
0000	Setting range: Same as those of A11 H		
	lower side span (p.86)		
R2 In	A21 High/Low limits independent	Conductivity input: 0.000 µS/cm	
0000	lower side span	Temperature input: 0.0℃	
	Setting range: Same as those of A11 F	ligh/Low limits independent	
	lower side span (p.86)	Conductivity inputs 0.000 //C/am	
822n nnnn	A22 High/Low limits independent lower side span	Conductivity input: 0.000 µS/cm Temperature input: 0.0°C	
0000	Setting range: Same as those of A11 F		
	lower side span (p.86)		
RIIP	A11 High/Low limits independent	Conductivity input: 0.000 μ S/cm	
0000	upper side span	Temperature input: 0.0℃	
	Conductivity input: Measurement range		
	Measurement range	e high limit (*1)	
R 12P	Temperature input: 0.0 to 100.0°C(*2) A12 High/Low limits independent	Conductivity input: 0.000 μ S/cm	
	upper side span	Temperature input: 0.0°C	
	Setting range: Same as those of A11 F		
	upper side span (p.86)		
R2 IP	A21 High/Low limits independent	Conductivity input: 0.000 μ S/cm	
0000	upper side span	Temperature input: 0.0℃	
	Setting range: Same as those of A11 H	ligh/Low limits independent	
0000	upper side span (p.86)	Opendary that is a concertification	
8228	A22 High/Low limits independent	Conductivity input: 0.000 μ S/cm	
0000	upper side span Setting range: Same as those of A11 H	Temperature input: 0.0℃	
	upper side span (p.86)		
l			

(*1) The measurement unit and decimal point place follow the measurement range. (*2) The placement of the decimal point does not follow the selection. It is fixed.

Character	Settina Ite	em, Setting Range	Factory Default	Data
R I IH	A11 hysteresi		Conductivity input: 0.001 μ S/cm	
aoo i			Temperature input: 1.0℃	_
	(Table 15-4)			
	Conductivity input:			
	Ме	asurement Range	Setting Range	
		0.000 to 2.000 µS/cm	0.001 to 0.200 μS/cm	
		0.00 to 20.00 µS/cm	0.01 to 2.00 <i>µ</i> S/cm	
		0.00 to 50.00 µS/cm	0.01 to 5.00 <i>µ</i> S/cm	
	Cell	0.000 to 0.200 mS/m	0.001 to 0.020 mS/m	
	constant	0.000 to 2.000 mS/m	0.001 to 0.200 mS/m	
	0.01/cm	0.000 to 5.000 mS/m	0.001 to 0.500 mS/m	
		0.00 to 2.00 mg/L	0.01 to 0.20 mg/L	
		0.0 to 20.0 mg/L	0.1 to 2.0 mg/L	
		0.0 to 50.0 mg/L	0.1 to 5.0 mg/L	
		0.00 to 20.00 µS/cm	0.01 to 2.00 <i>µ</i> S/cm	
		0.00 to 50.00 µS/cm	0.01 to 5.00 <i>µ</i> S/cm	
		0.0 to 500.0 µS/cm	0.1 to 50.0 <i>µ</i> S/cm	
	Cell	0.000 to 2.000 mS/m	0.001 to 0.200 mS/m	
	constant	0.000 to 5.000 mS/m	0.001 to 0.500 mS/m	
	0.1/cm	0.00 to 50.00 mS/m	0.01 to 5.00 mS/m	
		0.0 to 20.0 mg/L	0.1 to 2.0 mg/L	
		0 to 200 mg/L	1 to 20 mg/L	
		0 to 500 mg/L	1 to 50 mg/L	
	Cell	0.0 to 200.0 µS/cm	0.1 to 20.0 <i>µ</i> S/cm	
	constant	0.00 to 20.00 mS/m	0.01 to 2.00 mS/m	
	1.0/cm	0 to 200 mg/L	1 to 20 mg/L	
	Temperatur	e input:		
	-	asurement Range	Setting Range	
	0.0 to 100.		0.1 to 10.0 °C	
8 ISH	A12 hysteresi	S	Conductivity input: 0.001 μ S/cm	
aoo (Temperature input: 1.0℃	_
00.00		e: Same as those of A11		
R2 IH	A21 hysteresi	S	Conductivity input: 0.001 <i>µ</i> S/cm Temperature input: 1.0°C	
<u>aoo (</u>	Sotting rang	e: Same as those of A11		_
RSSH	A22 hysteresi		Conductivity input: 0.001 μ S/cm	
000 1	AZZ Hysteresi	5	Temperature input: 1.0°C	
<u> </u>	Setting rang	e: Same as those of A11	• •	
lErr	A output	when input errors occu	ur Disabled	
oFF[]	Selection item:			
	<i>□FF</i> □ : Disabled			
FIFI	Conductivity input filter time constant 0.0 seconds			_
	Setting range: 0.0 to 10.0 seconds			_
Eho[] 0000	Conductivity input sensor correction 0.000 µS/cm			4
0000	Setting range: ±10% of measurement span (*)			
485r	3-electrode Conductivity Sensor resistance 0 Ω			
	Setting range: 0 to 100 Ω			
dFcT	-	inputs for moving aver	age 20	4
20		e: 1 to 120		1

(*) The measurement unit and decimal point place follow the measurement range.

Temperature Input Group

Character	Setting Item, Setting Range	Factory Default	Data
l'eñ.	Temperature compensation method	NaCl	
nReL	$\sigma B c L$: Temperature compensation is conducted using temperature		
	characteristics of NaCI. Select whe	en the main salt ingredient	
	in a sample is NaCl.		
	$\int c a E$: Temperature compensation is cond		
	coefficient (%/℃) and a randomly s デビーE: Temperature compensation is condu		
	characteristics of deionized water.	ucted using temperature	
	$\Box F F \square$: No temperature compensation		
EcoE	Temperature coefficient	2.00 %/°C	
2.00	Setting range: -5.00 to 5.00 %/℃		
hind	Reference temperature	25.0℃	
25.0	Setting range: 5.0 to 95.0°C (*)		
dP2	Decimal point place	1 digit after decimal point	
0.0	$\Box \Box \Box$: No decimal point		
	. 1 digit after decimal point		
conE	Pt100 input wire type	3-wire type	
PF[]]3	Prizz : 2-wire type		
<u> </u>	$P \Gamma \square \exists$: 3-wire type		
c 86L	Cable length correction	0.0 m	
	Setting range: 0.0 to 100.0 m		
<u>c 4 E c</u>	Cable cross-section area	0.30 mm ²	
0.30	Setting range: 0.10 to 2.00 mm ²		
FIFZ	Temperature input filter time constant	0.0 seconds	
0	Setting range: 0.0 to 10.0 seconds		
dFcf	Temperature inputs for moving average	20	
20	Setting range: 1 to 120		

(*) The placement of the decimal point follows the selection.

Basic Function Group

Character	Setting Item, Setting Range	Factory Default	Data
Loct	Set value lock	Unlock	
	: Unlock		
	Loc 1 : Lock 1		
	Loce : Lock 2		
-,,			
c 7 5 6	Communication protocol	Shinko protocol	_
noñL	nent : Shinko protocol		
	ក្នុជអ៊ី : MODBUS ASCII mode		
-	nadr : MODBUS RTU mode		
cñno	Instrument number	0	_
<u> </u>	Setting range: 0 to 95		
c758	Communication speed	9600 bps	
55	<u>95</u> : 9600 bps		
	<i>192</i> : 19200 bps		
	<i>□∃용닉</i> :38400 bps		
chFf	Data bit/Parity	7 bits/Even	
7687	ອີດລວ : 8 bits/No parity		
	ingen: 7 bits/No parity		
	BEB_{T} : 8 bits/Even		
	$\frac{7}{2}EB_{n}$: 7 bits/Even		
	ಕ್ಷದದ : 8 bits/Odd		
	ີໄວວ່ວ່ : 7 bits/Odd		

Character	Setting Item, Setting Rai	nge	Factory Default	Data
<u>่ แล้ว</u> ไ	Stop bit		1 bit	
1				
F 1	<i>2</i> : 2 bits			
[ro] [Ec]]	Transmission output 1 typeConductivity transmission $\mathcal{E} \subset \square$: Conductivity transmission			
	$\mathcal{F} \mathcal{E} \overline{\partial \mathcal{F}}$: Temperature transmission			
ГгНІ			2.000 <i>µ</i> S/cm	
2000	Conductivity transmission: Tran			
	-		nge high limit	
	Temperature transmission: Tra	•		
[-L	Transmission output 1 low limi		0.000 µS/cm	
0000	Conductivity transmission: Con	•	-	
			output 1 high limit	
[ro2	Temperature transmission: 0.0° Transmission output 2 type	C to Trans		
, - 0C ΓΕΆΡ	<i>E c c c c c c c c c c</i>	esion	Temperature transmission	
	<i>EEEE</i> : Conductivity transmit	ission		
ГгН2	Transmission output 2 high lim		100.0℃	
1000	Conductivity transmission: Tran			
			nge high limit	
	Temperature transmission: Tra			
<u> </u>	Transmission output 2 low limi		0.0°C	
0.0	Conductivity transmission: Con	•	•	
	Temperature transmission: 0.0°		output 2 high limit	
Fre I	Transmission output 1 status		Last value HOLD	
BEFH	when calibrating			
	bEFH : Last value HOLD			
	<i>与EFH</i> : Set value HOLD			
- , ,	PBH : Measured value			
[Transmission output 1 value HOLD when calibrating		ity transmission: 0.000 μ S/cm re transmission: 0.0°C	
0000	Conductivity transmission: Con			
			nge high limit	
	Temperature transmission: 0.0 t			
[re2	Transmission output 2 status		Last value HOLD	
6EFH	when calibrating			
	<i>BEFH</i> : Last value HOLD			
	<i>与EFH</i> :Set value HOLD <i>P出H</i> :Measured value			
[r-52	Transmission output 2 value	Conductiv	ity transmission: 0.000 μ S/cm	
	HOLD when calibrating		re transmission: 0.0℃	
	Conductivity transmission: Con			
		•	nge high limit	
	Temperature transmission: 0.0 to 100.0°C			
	Auto-light function Disabled			
	E i Disabled			
di SP	L'SE : Enabled Display selection Conductivity/Temperature			
RLL	Display selection Conductivity/Temperature			
	Conductivity Display Temperature Display			
	RLL Conductivity		Temperature	
			No indication	
	FERP No indication		Temperature	
	οοοΕ No indication	1	No indication	

Character	Setting Item, Setting Range	Factory Default	Data
ГТ БЕ	Indication time	00.00	
0000	Setting range: 00.00 (Remains lit)		
	00.01 to 60.00 (Minutes.Seconds		
oFdP	Temperature Display when	Unlit	
oFF	no temperature compensation		_
	Selection item:		
	aFF: Unlit		
	ר היים : Reference temperature		
	PB : Measured value		
R IoF	A1 output allocation	A11 type	-
811	Selection item:		
	<i>用 I</i> I I⊡ : A11 type		
	<i>用 I2</i> ⊡ : A12 type		
	<i>튐근 I</i> □ : A21 type		
	<i>R22</i> ⊡ : A22 type		
	<i>B IBL</i> : A11, A12 types		
	828L : A21, A22 types		
	8 IR2 : A11, A21 types		
	8282 : A12, A22 types		
	RLL : A11, A12, A21, A22 types		
RZoF	A2 output allocation	A21 type	_
R2 I	Selection item: Same as those of A1 output allo	cation (p.90)	
oon l	Output ON time when A1 output is ON	0 seconds	
	Setting range: 0 to 9999 seconds		
ooF I	Output OFF time when A1 output is ON	0 seconds	
<i>D</i>	Setting range: 0 to 9999 seconds		-
oond	Output ON time when A2 output is ON	0 seconds	
<i>D</i>	Setting range: 0 to 9999 seconds		
ooF2	Output OFF time when A2 output is ON	0 seconds	
0	Setting range: 0 to 9999 seconds		
R IE	A1 conductivity input error alarm A	No action	
	Selection item:		
(E E E : No action		
	<i>B I I</i> ⊡ : A11 type		
	<i>用 I2</i> □ : A12 type		
	<i>₽₽_1</i> . : A21 type		
	822 : A22 type		
828	A2 conductivity input error alarm A type	No action	
	Selection item:		
	<i>用 I I</i> □ : A11 type		
	<i>Я I2</i> ⊡ : A12 type		
	<i>R2</i> /□ : A21 type		
	<i>R22</i> □: A22 type		
R IEo	A1 conductivity input error alarm band	0.000 <i>µ</i> S/cm	
0000	when A output ON		-
	Setting range:	na biab Kasit	
	Conductivity range low limit to Conductivity range		
R Iof	A1 conductivity input error alarm time when A D output ON	0 seconds	
0			-
	Setting range: 0 to 9999 seconds or minutes (*)		

 $(\ensuremath{^*})$ The time unit depends on the selection in [Conductivity input error alarm time unit].

Character	Setting Item, Setting Range	Factory Default	Data
A IEc	A1 conductivity input error alarm band	0.000 <i>µ</i> S/cm	
0000	when A output OFF		
	Setting range:		
	Conductivity range low limit to Conductivity	range high limit	
Ricí	A1 conductivity input error alarm time	0 seconds	
<i>D</i>	when A		
	Setting range: 0 to 9999 seconds or minutes	S (*)	
8260	A2 conductivity input error alarm band	0.000 µS/cm	
0000	when A		_
	Setting range:		
	Conductivity range low limit to Conductivity	range high limit	
8265	A2 conductivity input error alarm time	0 seconds	
	when A		
	Setting range: 0 to 9999 seconds or minutes		
825c	A2 conductivity input error alarm band	0.000 μ S/cm	
0000	when A coutput OFF		_
	Setting range:		
	Conductivity range low limit to Conductivity		
RZcF	A2 conductivity input error alarm time	0 seconds	
	when A output OFF		_
• • (1113)	Setting range: 0 to 9999 seconds or minutes		
	Conductivity input error alarm time unit	Second(s)	_
48c	Selection item:		
	らとう : Second(s)		
	ดี/ ด่่ : Minute(s)		

(*) The time unit depends on the selection in [Conductivity input error alarm time unit].

***** Inquiries *****

For any inquiries about this unit, please contact our agency or the vendor where you purchased the unit after checking the following.

[Example]

• Model ----- WIL-102-ECL

Serial number ----- No. 195F05000

In addition to the above, please let us know the details of the malfunction, or discrepancy, and the operating conditions.

SHINKO TECHNOS CO., LTD. OVERSEAS DIVISION

Head Office: [URL]

[E-mail]

2-5-1, Senbahigashi, Minoo, Osaka, 562-0035, Japan

https://shinko-technos.co.jp/e/ overseas@shinko-technos.co.jp Tel: +81-72-727-6100 Fax: +81-72-727-7006